Project description
The digital transformation of air transport management
Air transport management (ATM) requires the collaboration of airlines, service providers and authorities on the ground to ensure smooth day-to-day operations. Advances in technology and the digitalisation of services mean that big data analytics and new risk assessment methodologies can prove useful. The EU-funded SafeOPS project will explore how these future services can help improve the safety and cost-efficiency of air transport operations. It will focus on the decision making process in go-around scenarios, which is of high safety relevance for both airlines and air navigation service providers in ATM. Overall, the project will promote the modernisation of ATM based on artificial intelligence tools and a special focus on the interactions between humans (controllers).
Objective
Maintaining safety and cost-efficiency of air transport operations while increasing the capacity will push the next generation of ATM systems towards digitalization. In the mid-term, a digitalized system in the human operated ATM environment will be capable of delivering reliable predictive analytics based on automated information processing, providing decision support for human operators. SafeOPS supports these future services by investigating the use of big data analytics together with new risk assessment methodologies.
ANSP and airlines are the relevant stakeholders of the aviation business, forming the SafeOPS consortium. Several research institutes complement the consortium. To ensure the high confidentiality levels of the associated datasets, SafeOPS utilizes DataBeacon, a platform that allows fusing and analyzing confidential aviation data. As an exemplary safety-critical scenario, SafeOPS considers go-arounds that are of high safety relevance for both, airlines and ANSPs. Based on successful unstable approach predictions, developed in the Horizon2020 project SafeClouds.eu SafeOPS will carry out go-around predictions and analyze their impact onto the safety and resilience of ATM in detail.
As recognized by the SESAR Single Programming Document, data-driven and machine learning technologies are a cost-efficient asset to reduce current fragmentation and upgrade inefficient old technologies. In turn, they introduce new challenges for ATM stakeholders, from controllers and their training to regulators and certification agencies. SafeOPS addresses some of these challenges by fostering the ATM modernization based on AI tools with an application on safety and resilience through an exemplary case study. It puts a special focus on the interaction among humans (controllers) and within the socio-technical system under the influence of this breakthrough technology. Therefore, it addresses both key performance areas from the Safety and Resilience ATM Master Plan.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science big data
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.7. - SESAR JU
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SESAR-2019-2
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.