Project description
Probing interacting many-body systems far from thermal equilibrium
The concept of thermodynamic equilibrium is fundamental to a modern understanding of interacting many-body systems. However, quantum systems isolated from the environment challenge textbook wisdom as they fail to reach thermal equilibrium and manage to retain a memory of their initial condition in local observables for an infinite amount of time. This dynamical phenomenon occurring in isolated many-body quantum systems is known as many-body localisation. The EU-funded MBL-Fermions project aims to enhance understanding of this phenomenon. It plans to study many-body localisation at tilted lattices, characterise the localisation properties using bipartite fluctuations and use a quantum simulator with more than 100 lattice sites to advance theories on interacting many-body systems.
Objective
The question of how an isolated quantum mechanical system thermalizes is not only significant in condensed matter physics, but it also invokes the intriguing problem of the apparent loss of information in a complex system as it thermalizes. A curious case is when a complex system fails to thermalize altogether -- a phenomenon known as many-body localization (MBL). Here, we propose to use interacting ultracold fermions in a lattice to experimentally study the distinctive properties of MBL using a novel set of observables.
Among the questions in MBL debated intensely today are those concerning the existence of a many-body mobility edge, many-body intermediate phase and localization in higher dimensional lattice systems. Moreover, the striking relation between non-ergodicity and Hilbert space fragmentation is also not fully understood.
In this view, our research objectives include:
[1.] Stark many-body localization and Hilbert space fragmentation. We plan to study MBL in a tilted lattice, i.e. a Stark Hamiltonian and study non-ergodicity resulting from Hilbert space fragmentation.
[2.] Bipartite fluctuations in an MBL system of >100 lattice sites: We propose to characterize the localization properties using bipartite fluctuations which is a proxy for the Entanglement entropy of a 1D lattice.
[3.] Approximate theories for fermionic MBL systems: Due to the exponential Hilbert space dimension of an interacting many-body system, studying their properties numerically is also exponentially hard. We plan to use a quantum simulator with >100 lattice sites develop efficient approximate theories to describe these systems.
The aforementioned projects are easily accessible to the current experimental capability and they will enhance our general understanding of MBL physics. Moreover, they also include a step towards developing ultracold atoms in a lattice into a quantum simulator, capable of solving hard problems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics
- natural sciences mathematics pure mathematics algebra linear algebra
- natural sciences physical sciences theoretical physics particle physics fermions
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.