Project description
Developing better sweat-based wearables
Smart wearable devices, namely smartwatches and fitness trackers, are creating a fast-growing market. Recording activity data (speed, distance and heart rate), they are connected to the cloud. Technological advances will soon make it possible for these devices to also capture body dynamics at the molecular level. Sweat can provide access to valuable sets of biomarkers. But, sweat-based wearables face many challenges: biocompatibility, flexibility, durability, data integrity, low-power consumption, lightness in weight, and low-cost construction. The EU-funded SWeaT project will develop a low-cost wearable device capable of sensing and recording electrolytes concentration in sweat, as well as sweat rate and temperature.
Objective
Internet-of-Wearables (IoW) is already a reality embodied in commercial products for fitness, such as Fitbit, Apple Watch. These devices record activity data (speed, distance, heart-rate, impact forces) and are connected to the Cloud through Bluetooth enabled access points.
Smart wearables of the next generation of will integrate bio-chemical sensing to capture body dynamics at molecular level and in real time. Sweat, naturally produced by the human body, will enable non-invasive access to rich sets of bio-markers. However, sweat-based IoW devices face many challenges: bio-compatibility, flexibility, durability, data integrity, low-power consumption, lightness in weight and low-cost construction.
SWeaT (Smart Wearable for Fatigue Tracking) will address all these issues and will enable coaches, physicians and trainers to better analyze the performances/fatigue trade-off by real-time monitoring of athletes’ parameters.
To this purpose, SWeaT will develop a low-cost wearable device capable of sensing and recording a full set of relevant electrolytes concentration in sweat, sweat rate and temperature. The device will take advantage of: (i) a custom IC in low-cost CMOS technology to provide early readout and signal digitalization (ii) micro-fluidic paths to properly manage the sweat flow during real-time measurement. A Bluetooth Low Energy module will be embedded in a sport gear to enable lightweight, minimal invasiveness, 10-to-100-meter wireless range communication. SWeaT plans to reach TRL 5 and to develop a Minimum Valuable Product by the end of the action to fully exploit the developed technology.
SWeaT will be implemented at the University of Pisa with a secondment in Barcelona at the Microelectronic Institute. Through SWeaT and its tailored training plan, Dr. Dei will greatly enrich his scientific and soft skills towards his next career challenge.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology bluetooth
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
56126 PISA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.