Project description
Unique ultracold gas mixture offering new insight into superfluidity
When atoms are cooled to temperatures close to zero kelvin, they can form exotic new states of quantum matter such as superfluids. In this novel phase, certain fluids lose internal friction. The EU-funded SIMIS project plans to explore fundamental questions about new types of superfluids created from ultracold mixtures of atomic gases. Combining two different atomic species modifies interatomic pairing properties and thus changes the nature of the superfluids. The study will focus on obtaining the phase diagram and the thermodynamic properties of such an atomic gas mixture. Using quantum simulation, this unique quantum system will offer a promising platform for unprecedented studies on superfluidity. Observations of superfluids can help answer lingering questions about other strange phenomena such as high-temperature superconductivity.
Objective
Superfluids violate our classical intuition, provoking many intriguing questions in modern condensed matter physics. In particular, superfluid phases with non-standard pairing mechanisms, which play an essential role in diverse physical systems including high-Tc superconductivity, have attracted great interests, and the underlying principles challenge our understanding. Ultracold atomic systems have emerged as an ideal testbed for simulating such many-body states by directly comparing theories with experiments. Recently, the host group has achieved a novel mass-imbalanced Fermi-Fermi mixture, which offers unprecedented opportunities to realize unusual superfluid phases. Here, we propose experimental studies on unconventional superfluidity by exploiting the excellent controllability in our new quantum system.
Mass imbalance changes how the two Fermi surfaces overlap, causing the pairs to have finite momentum and resulting in a rich phase diagram. We aim to explore many-body phases appearing in a mass-imbalanced Fermi-Fermi mixture near the strongly interacting limit. To demonstrate superfluidity, we will probe the atoms by magnetic and optic methods, which allow distinguishing between pairs and unpaired atoms. Moreover, we will investigate the superfluid shell structure in a trapped system to characterize the phase diagram and the thermodynamic properties in the strongly interacting regime, based on tomographic imaging. Finally, we plan to extend our methods to search for exotic forms of superfluidity such as supersolid or gapless phases.
Our research will open a new chapter of condensed-matter simulation with ultracold atoms by providing a unique platform to study unconventional superfluidity. The successful demonstration will have strong impact on the scientific community even beyond the field of quantum gases. The techniques applied in this project can be further developed to address many other interesting topics such as impurity physics and transport dynamics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences physical sciences condensed matter physics quantum gases
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6020 Innsbruck
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.