Project description
Developing long-lived, space-compatible quantum memories
Quantum experiments in space have led to many interesting technological advances that long-distance quantum communication (QC) could benefit from. However, the line of sight distance restricts the direct transmission of quantum information to a few thousand kilometres. One solution is to equip satellites with quantum memories. Furthermore, by observing gravitational effects on quantum systems, scientists could gain new perspectives in their search for a quantum theory of gravitation. Research into the long-lived entanglement of quantum matter systems in curved space-time could lead to new physical insights. The EU-funded QSPACE project therefore aims to develop a space-compatible, small-footprint laser-cooled quantum memory with storage times in the order of seconds. Such a system could surpass memoryless QC schemes with realistic memory performances.
Objective
Quantum experiments in space open up numerous interesting technological and scientific possibilities in the last years. Long-distance quantum communication (QC) is one of the first applications that would benefit from these advances as quantum information can be transferred over very long distances by satellites. However, this range is limited by the line-of sight distance which limits the direct transmission of quantum information to around few thousand kilometres. One solution to reach true global distances while relaxing the security assumptions used in satellite QC is to equip satellites with quantum memories (QMs). This would allow the implementation of satellite-based quantum repeater networks that could potentially cover global distances and increase the secret key rates by synchronising otherwise probabilistic detection events.
On the other hand, scientifically, the possibility of observing gravitational effects on quantum systems has the promise of bringing new perspectives into the search of a quantum theory of gravitation. In this regard, research into long-lived entanglement of quantum matter systems in curved space time could yield new physical insights. Along these lines we propose to develop a space-compatible, small-footprint laser-cooled quantum memory with storage times in the order of seconds. Our preliminary work suggests that such a system could beat the memory-less quantum communication schemes with realistic memory performances.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10117 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.