Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantification of mixing and dynamic uncertainty for transport in heterogeneous porous media

Project description

Accurately predicting flows in materials with variations in pore size

Porous media consist of a solid matrix and void space (pores). Natural and engineered porous media include rocks and soils, membranes and tissues, foams and sponges, with applications ranging from geothermal energy production, geological radioactive waste storage to fuel cells, and micro-circulation in the brain. Porous media are intrinsically heterogeneous from the millimeter (pore geometry) to the kilometer (composition of different materials) scale. Multi-scale heterogeneity strongly impacts fluid flow and the transport and mixing of dissolved substances (contaminants, nutrients), which represents a major challenge for their prediction. The EU-funded MixUQ project will investigate the heterogeneity-induced dynamics of these processes and their uncertainty due to spatial fluctuations. These efforts will lead to the development of new models to accurately predict mixing and transport in heterogeneous media with implications for different fields and porous media applications.

Objective

Natural and engineered porous systems exhibit heterogeneity across several spatial scales leading to complex flow fields with strong fluctuations. The latter enhance the segregation and distortion of a transported scalar mixture, while diffusion promotes the local homogenization of it. In this context, spreading has been traditionally identified with the overall growth of the dissolved plume while mixing with the internal plume homogenization. Accurate quantification of mixing in heterogeneous media is one of the most relevant and still open challenges. Our current failure lay in the inability of capturing the interplay between flow fluctuations and local diffusion: the former promotes both the internal plume segregation (at early times, dominance of pure advection) and the subsequent homogenization (at late times; dominance of dispersion) by the sampling of flow fluctuations which trigger the internal folding and distortion of the plume enabling local homogenization by diffusion (coalescence mechanism). We here propose to predict mixing within a unified framework (Work package 1) which leverage on the Lamellar description of transport and capture the early (segregation) and late (coalescence) time impact of fluctuations by viewing spreading as a sub-plume scale process: the dispersion and interactions of Lamellae are captured through a continuous time random walk (CTRW) approach. At the same time, uncertainty about concentration distribution is a dynamic quantity ruled by the same physical mechanisms: plume segregation (uncertainty production) and homogenization (uncertainty reduction). We here take advantage of the insight from the novel transport model to close evolution equations (e.g. for the variance and the probability density function) apt to describe the dynamic uncertainty (Work package 2). We then explore the establishment of ergodicity for mixing under a variety of conditions (e.g. degree of heterogeneity, strength of diffusion and advection)

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 160 932,48
Address
CALLE SERRANO 117
28006 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 160 932,48
My booklet 0 0