Project description
Probing the electronic conductance properties of graphene nanoribbons
Graphene nanoribbons, narrow 1D stripes of graphene with widths in the nanometer range, are promising building blocks for nanoelectronics. Obtaining detailed electronic information such as their intrinsic charge transport is essential when evaluating candidates for high-performance electronic devices. The EU-funded GNR CONDUCTANCE project plans to measure the conductance of individual graphene nanoribbons in the lateral planar configuration using multi-tip scanning tunneling microscopy (STM). In particular, it will investigate graphene nanoribbons around 1–2 nm wide and 20–100 nm long, synthesised on top of a gold substrate. For accurate measurements, special focus will be placed on ensuring the STM tips form stable contacts with the graphene nanoribbons. To electrically decouple graphene nanoribbons from the gold substrate, the project will use intermediate ultrathin insulating NaCl layers.
Objective
I will explore intrinsic charge conductance characterization of electrically decoupled individual graphene nanoribbon (GNR) in the lateral planar configuration by using two-tip scanning tunneling microscopy (STM) approach. For this purpose, on-surface synthesized GNRs of width ~1-2 nm and length <20-100 nm on metallic Au (111) surface will be considered. A unique two-tip STM microscope, which has been standardized at the host’s lab (in CEMES-CNRS), will be used for its excellent vertical (z) stability (Δz <2 pm) of piezo scanners to control the tip-to-GNR contacts. With ultimate precision, the proposed approach reserves atomic cleanliness under ultrahigh vacuum (UHV) starting from on-surface GNR synthesis on metallic Au(111) surface till the end of two-tip STM conductance characterization. We will use intermediate atomic thin layers of insulating gap sodium chloride (NaCl) to electrically decouple GNR from the Au(111) surface during charge conductance measurements with electrically disconnected substrate (floating substrate potential). We focus on the fundamental challenges associated with the two-tip charge conductance measurements of GNR, notably, establishment of stable STM tip point contacts to the GNR. Indeed, different types of contact configurations are expected depending on the tip-to-GNR distance, such as tunneling, van der Waals, chemical and mechanical, which can be monitored by recording the jump-to-contact characteristics (tunneling current vs tip height (I-z) spectra). Conductance characteristics of GNR are investigated in tip-to-tip configuration through planar GNR, which include current-voltage (I-V), voltage dependent resistance R(V), conductance G = I/V, differential conductance (dI/dV), current decay with tip-to-GNR distance (dI/dz), etc. Overall, we are determined to provide an atomic clean approach to explore the conductance characteristics of molecular GNR (width ~1-2 nm and length <20-100 nm).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences physical sciences optics microscopy scanning tunneling microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.