Description du projet
Étude des liens entre horloge circadienne et traits de caractère des plantes
L’horloge circadienne est un mécanisme de synchronisation qui permet aux organismes d’aligner leurs processus physiologiques endogènes sur les changements qui interviennent au niveau de leur environnement. Ces horloges biologiques ne sont pas seulement des chronométreurs, elles jouent également le rôle de régulateurs essentiels de réseaux cellulaires étendus. En plus du contrôle des rythmes circadiens, une protéine nucléaire clé spécifique aux plantes, GIGANTEA, joue un rôle dans divers processus physiologiques. Elle fonctionne au niveau de l’interface entre l’horloge et ses voies de sortie. Le projet CHRONOTRADE, financé par l’UE, va étudier GIGANTEA et caractériser le mécanisme moléculaire qui lui permet de moduler l’équilibre entre croissance et défense. Afin d’établir un cadre pour une manipulation biotechnologique ciblée, les connaissances acquises seront transférées à une espèce cultivée (la tomate). Les résultats permettront de gagner une meilleure compréhension des liens entre l’horloge biologique et ses voies de sortie dans les espèces modèles et cultivées.
Objectif
Circadian clocks are conserved time-tracking mechanisms that allow organisms to align endogenous physiological processes with the changing environment. Growing evidence supports a role for these biological clocks, not only as mere timekeepers, but as pivotal regulators of extensive cellular networks. In plants, the influence of the clock on development and physiology is pervasive and many traits of agronomical value are subjected to circadian regulation. Noteworthy, clock gene alleles have been traditionally selected because of their desirable influences on key agricultural traits.
An outstanding clock protein that functions at the interface between the clock and its output is GIGANTEA (GI). We propose to investigate this regulatory hub protein, and characterize the molecular mechanism by which it modulates the balance between growth and defense. Knowledge gained from the model plant Arabidopsis will be transferred to a crop species (tomato) in order to establish a framework for targeted biotechnological manipulation. Consequently, an innovative strategy based on edgetic alleles will be deployed to generate new GI alleles that uncouple growth from defense, a key feature for cultivated species.
From a training point of view, this fellowship will build on the Experienced Researcher’s (ER) solid expertise on molecular biology and complement it with the skills required to translate basic research to tackle specific agronomical issues. This will undoubtedly boost her opportunities to reach an independent research position with biotechnological orientation.
In summary, this proposal aims to (i) advance our understanding on the connections between the clock and its output in model and crop species, (ii) generate novel variants of circadian-clock components as a biotechnological strategy for sustainable agriculture, and (iii) render a well-trained academic researcher with the capacities needed to develop a professional career within biotechnological research.
Champ scientifique
- agricultural sciencesagriculture, forestry, and fisheriesagriculturesustainable agriculture
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network
- medical and health sciencesbasic medicinephysiology
- natural sciencesbiological sciencesmolecular biology
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
28006 Madrid
Espagne