Project description
Investigating how new particles form in polluted areas
The formation of atmospheric particles starts from the growth of small molecular clusters. However, the probability that freshly formed clusters reach larger sizes in heavily polluted urban areas is small because aerosol particles act as a sink for them and for condensable vapours. The EU-funded NPF-PANDA project plans to measure cluster-size distributions below 3 nm in urban areas using multiple instruments and data analysis methods. By combining measurements from Beijing with laboratory experiments at the CERN CLOUD chamber, the magnitude of the underlying microphysical growth processes such as coagulation or condensation will be disentangled and the effects of different precursor gases will be tested. The project's results will demonstrate how fast growth affects the probability of the newly formed clusters surviving under high condensation sink.
Objective
NPF-PANDA aims for a multi-method assessment of cluster dynamics in urban environments during new particle formation. New particle formation by gas-to-particle conversion is frequently detected in the atmosphere, but, according to the current understanding, should not proceed in heavily polluted urban areas, where large amounts of primary aerosol particles are present acting as sink for both condensable vapours and newly formed clusters. However, it is nonetheless observed in Chinese megacities where it even can promote haze formation and hence impact urban air quality. It is under debate, whether this is linked to faster cluster growth or a less effective condensation sink than commonly assumed. NPF-PANDA will quantify urban cluster size-distributions below 3 nm with a multi-instrument approach and novel data analysis methods. This will lead to unprecedented high quality data of the cluster dynamics and solve the role of fast growth on the survival probability of newly formed clusters under high condensation sink. By combining measurements from urban Beijing with precisely tailored laboratory experiments at the CERN CLOUD chamber, the magnitude of the underlying microphysical growth processes like coagulation or condensation will be disentangled and the effects of different precursor gases can be tested. Cluster dynamics simulations will back-up the experimental findings and via a detailed comparison of measured and simulated size-distributions, this will reveal information on cluster stability and the cluster-stabilizing role of different bases. Altogether, the project will be an essential part in solving the “China-NPF-puzzle” and hence impact future air quality research and air pollution mitigation, which is also highly relevant for medium-polluted European cities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences physical sciences theoretical physics particle physics
- engineering and technology environmental engineering air pollution engineering
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00014 HELSINGIN YLIOPISTO
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.