Project description
Towards reconfigurable control of all-dielectric optical metasurfaces
All-dielectric optical metasurfaces are more efficient than conventional plasmonic metasurfaces. However, the optical response of traditional dielectric-based metasurfaces is fixed by design. A far wider range of applications could be addressed if active/reconfigurable control was feasible. Combining high-index dielectric nanostructure arrays with chalcogenide phase-change materials is a promising all-dielectric reconfigurable metasurface approach. However, there are very few dielectric metasurface designs that incorporate phase-change materials, and those reported are switched ex-situ. The EU-funded DReM-PCM project aims to design and experimentally fabricate two reconfigurable all-dielectric phase-change metasurfaces with in-situ switching electrically realised by an integrated microheater and by a crossbar structure, respectively. It will also tune the optical response of the metasurfaces for potential optical applications, such as Lidar-type beam steering.
Objective
All-dielectric optical metasurfaces have recently attained much attention due to their ability to provide higher efficiencies than the more conventional plasmonic metasurfaces, and for their ability to readily work in both reflection and transmission. However, the functionality of traditional dielectric-based metasurfaces is fixed-by-design, i.e. the optical response is fixed by the size, arrangement and index of the nanoresonators. A far wider range of applications in many important technological/industrial fields, ranging from communications, to sensing, robotics, displays and much more, could be addressed if active/reconfigurable control were possible. One promising all-dielectric reconfigurable metasurface approach arises from the combination of high-index dielectric nanostructure arrays with chalcogenide phase-change materials (e.g. GeSbTe alloys). The latter can be electrically, optically or thermally switched between their crystalline and amorphous states, or to intermediate states between the two, with ultra-low energy consumption in a non-volatile manner and exhibit remarkably different optical properties between phases. It is therefore possible to achieve an all-dielectric reconfigurable metasurface by continuously tuning the phase states of the chalcogenide alloy. However, very few dielectric metasurface designs incorporating phase-change materials have been explored to date, and those that have been reported are switched through ex-situ means, while some form of in-situ switching is definitely required to meet real device applications.
To achieve this objective, we will (1) theoretically design and experimentally fabricate two reconfigurable all-dielectric phase-change metasurfaces whose in-situ switching is electrically realised by an integrated microheater and by a crossbar structure respectively, and (2) continuously tune the optical response of the designed metasurfaces for potential optical applications such as Lidar type beam steering).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EX4 4QJ Exeter
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.