Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

On the maximum energy of particles accelerated in astrophysical jets

Description du projet

Des modèles mathématiques nous aident à comprendre une forme cosmique de «propulsion à réaction»

Tout comme une explosion sur Terre produit des chocs qui accélèrent les objets proches, les ondes de choc des phénomènes cosmiques de notre Univers peuvent accélérer les particules spatiales. Les jets astrophysiques, des faisceaux de matière éjectés de certains objets astronomiques, notamment des noyaux actifs de galaxie, sont connus pour produire de tels chocs. Nous ne connaissons toutefois pas clairement l’énergie maximale que les particules spatiales peuvent atteindre du fait de leur accélération, et cette question est fondamentale pour l’identification et la compréhension des particules à haute énergie dans notre galaxie. Le projet EMAXSHOCK, financé par l’UE, étudie cette question ouverte à l’aide de modèles informatiques pionniers.

Objectif

Astrophysical jets moving in an external medium produce shocks where particles can be accelerated via Diffusive Shock Acceleration (DSA). The main uncertainty is the maximum energy that particles can achieve, and this has important implications for different fields in astrophysics. In particular, one of the most exciting problems is the origin of the Ultra High Energy Cosmic Rays, and jets from Active Galactic Nuclei (AGN) have been proposed as candidates. At lower energies cosmic rays are likely galactic. With that respect, a large fraction of gamma-ray
sources in the Galaxy remain unidentified, and protostellar jets are among candidates to be the hidden cosmic ray accelerators. It was very recently demonstrated that mildly relativistic shocks in the backflows in the lobes of AGN jets can accelerate particles up to the Hillas energy,
offering a suitable environment for the acceleration of UHECRs. However, in order to account for the heavy composition of the UHECR spectrum, a jet mass loading mechanism is needed. At lower energies, acceleration of TeV particles in protostellar jets can be quenched by ion-neutral collisions, and therefore kinetic calculations are desirable in order to
compute the maximum energy of particles in low velocity shocks and non-completely ionized plasmas.
I will investigate the maximum energy that particles can achieve when they are accelerated via DSA in mildly-relativistic and low-velocity shocks, in AGN and protostellar jets, respectively. In the former case I will consider the shocks produced by the interaction of powerful stellar winds with the jets, whereas in the latter case we will consider the jet termination shocks. By performing unprecedented calculations with the a newly developed hybrid code, I aim to address the maximum energy and composition of the UHECR spectrum by modeling the backflows of jet/wind interactions. In addition, I aim to address if protostellar jets can accelerate TeV particles and emit gamma rays.

Coordinateur

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 184 707,84
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 184 707,84