Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Surface and sub-surface modified nano-electrocatalysts for the conversion of CO2 to value-added products: A structure-selectivity-mechanism-stability catalog

Project description

Copper-based catalyst could efficiently turn CO2 into valuable products

Global climate change and associated high energy demands are a major challenge of our times. To address these issues, there is a focus on generating alternative fuels as well as other value-added chemicals, mainly from CO2 (waste to wealth strategy). Electrochemical technologies offer a promising solution. Copper stands as the state-of-the-art benchmark electrocatalyst to convert CO2 to chemical feedstock. However, copper is not particularly selective and exhibits long-term instability. The EU-funded CO2-CAT-ALOG project will use a combination of synthesis, advanced electrochemical characterisation, density functional theory (DFT) and microkinetic modelling, to gain new insights into the activity-selectivity-mechanism-stability of copper.

Objective

In the age of Anthropocene, major challenges faced by mankind today are the global climate change and the associated huge energy crisis due to ever increased population demand. So, the contemporary interests are towards energy storage and conversion reactions and in generating the alternative fuels (from CO2, waste to wealth strategy). Copper is the known best electrocatalyst for the reduction of CO2 (green-house gas). However, Cu is not particularly selective-stable electrocatalyst and is vary prone to deactivation; selectivity and stability are two important strictures directly associated with the geometric and electronic structure of the catalyst and hence on the CO2 conversion efficacy. Herein, we propose few strategies with CO2-CAT-ALOG such as doping with IIIA group elements, to effectively have active-selective-stable electrocatalyst to reduce CO2 to >C1 desired products and explain the mechanism of actions by carrying out experiments and theory in tandem. Appropriately, this proposal aims at the (i) synthesis of atomically precise, zero-dimensional (0D) modified Cu nanoparticles (mCNPs) supported over 2D materials, (ii) exploring the parameters governing the CO2 activation and stability of the reaction intermediates with the aid of DFT calculations (modelling and simulation at nano-scale) and micro-kinetic modelling (iii) detailed study on selectivity and stability of modified surface and sub-surface of CNPs with IIIA-group with the aid of high-end multi-analytical methodologies. This CO2-CAT-ALOG approach will not only bridge the gap between theory and experiments at the nano-scale level to a possible extent, but also facilitates intra-European knowledge transfer along with direct societal impacts. In addition, proposed work will not only provide solid guidelines to smart-design and screen the robust active-selective-stable electrocatalysts but also addresses issues to overcome impediments in the field of electrocatalysis of CO2 in near future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

KEMIJSKI INSTITUT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 040,32
Address
HAJDRIHOVA 19
1000 Ljubljana
Slovenia

See on map

Region
Slovenija Zahodna Slovenija Osrednjeslovenska
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 040,32
My booklet 0 0