Project description
High throughput second harmonic generation to probe biological surfaces
Biological surfaces are essential for life; they provide a substrate for chemical signalling, allow the active and passive transport of substances and contribute to the specialised compartmentalisation in eukaryotic cells. The EU-funded H2O-SurfaceProbe project aims to enable the probing of biological surfaces using a second harmonic (SH) response methodology. A new high throughput SH setup will be introduced in combination with ~3 orders of magnitude enhancement in the SH response to enable probing at biologically relevant (~100 mM) salt concentrations. Using this new high throughput setup, two different biological membrane systems and supported reactions will be elucidated: biomimetic lipid droplet organelle and liposomes.
Objective
Biological surfaces are essential for life. Nature employs them as a hub for chemical signalling, active and passive transport of substances, and specialized compartmentation in the building block of life, eukaryotic cell. As such it has been in the main focus of chemist, physicist, and biologist to probe these surfaces with a wide variety of different techniques; from NMR to STORM. This, in fact, is not an easy task since obtaining selective information only from surfaces generally requires to introduce some reporting molecules (chromophore). However, the response of a dye molecule is not always, report on the changes on the biological surface. In this IF proposal, the aim is to enable the probing of biological surfaces, free-floating model membranes, label-free, and non-invasive from the response of interfacial water molecules with second harmonic (SH) response. First, a new high-throughput SH setup will be introduced. The proposed ~3 orders of magnitude enhancement in the SH response will enable to probe at biology relevant (~100 mM) salt concentrations. A big accomplishment for the SH research field. Second, by using this new high throughput setup, two different biological membrane systems and reactions occurring there at will be elucidated, biomimetic lipid droplet organelle, and liposomes, two free-floating membrane model system. Due to its novel aspects, a significant impact is expected from the deliverables of this proposal not only for the scientific field, but also possible intersectoral collaboration prospects as well as opening opportunities for the researcher to achieve a permanent position.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
06800 Bilkent Ankara
Türkiye