European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Multiscale Fluid and Plasma Dynamics using Particles

Description du projet

Des modèles multi-échelles qui nous permettent de voir la forêt en observant les arbres

Des satellites dans l’espace aux procédés de revêtement avancés et aux dispositifs nanofluidiques, les flux de fluides et de plasmas sont d’une importance capitale à de nombreuses échelles. La condition spécifique de l’écoulement hors équilibre est particulièrement importante étant donné son potentiel de résultats inattendus et non désirés, alors qu’il est difficile à décrire mathématiquement. Le projet MEDUSA, financé par l’UE, étudie ce qui se passe dans les fluides et les plasmas, et comment ils affectent d’autres matériaux, que ce soit dans des volumes et des systèmes microscopiques ou dans ceux que nous pouvons observer avec des télescopes. Profitant d’une puissance de calcul toujours croissante, l’équipe développe de nouveaux modèles multi-échelles de l’écoulement des fluides et des plasmas, basés sur la dynamique des particules qui les composent.

Objectif

In the last decades, non-equilibrium effects in fluid and plasma dynamics have become the major topic for the understanding of the physics behind many applications and important industrial fields.
These applications include mirco- and nano-technologies along with plasma-based coating processes of nano device fabrication itself, where small dimensions lead to non-eq. effects.
But the applications range right up to other key areas, e.g. re-entry flows and flows around satellites, where rarefied gas and high velocities cause non-equilibrium. Furthermore, continuing miniaturization and increase of process energies will lead to non-eq. effects within technologies in the near future e.g. micro- and nano-fabrication, next-generation lithography or various space systems such as electric propulsion or actively electrodynamically shielded re-entry.
At the moment, non-eq. is still a perturbing phenomenon, because experimental measurements are complicated and simulation tools are only available for specialised problems due to the complexity.
The objective is to progress toward particle-based multiscale methods for thermo-chemical non-eq. gas and plasma flows allowing for the first time simulations of the whole range of high-tech applications and maintaining the competitiveness of European future industry.
As the availability of computational resources increases with decreasing prices, particle methods have become a novel attractive, accurate and elegant numerical tool.
This project will connect competences in physics, mathematics, chemistry and computational science and extend the open-source code platform PICLas, resulting in a direct benefit for the simulation community. Finally, as a main contributor in the field of particle-based fluid dynamics and the main developer of PICLas, I am confident to establish these novel methods as the state-of-the-art in research and academia as well as to enable their utilization in industrial applications.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITY OF STUTTGART
Contribution nette de l'UE
€ 1 446 125,00
Adresse
KEPLERSTRASSE 7
70174 Stuttgart
Allemagne

Voir sur la carte

Région
Baden-Württemberg Stuttgart Stuttgart, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 446 125,00

Bénéficiaires (1)