Objective
We propose systematic extensive investigations of many-body spin phenomena in semiconductor nanostructures, with a goal to find effective magnetic/spin mechanisms to tailor various electronic anisotropies, potentially useful in device structures. The two principal Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit interactions (SOI) will be explored. We plan to calculate the anisotropy of the Friedel oscillations and of the many-body renormalization of the electron mass. We propose to design a device scheme to control the effective mass through the relative strength of the BR and D couplings. We’ll study the effect of exchange and correlations on the SOI induced anisotropy of plasmons. Another goal is to investigate the SOI effects on the charge and spin Coulomb drag (CCD and SCD). We'll focus on two effects, related to (i) the new drag channel, induced by the inter-chirality transitions, and (ii) the dominance of large-angle-scattering events in CCD and SCD. This requires accurate calculations with the use of the exact Lindhard polarization function. Recently we have shown that SCD is suppressed in wide quantum wells. Here we propose to study a crossover from Coulomb to phonon-mediated spin drag with an increase of the carrier density and the well width. Another goal, related to the phonon system, is the calculation of spectral and damping properties of new complexes, coupled plasmon-optical phonon modes, in the presence of BR+D SOI. Next we propose to study spin phenomena in hybrid ferromagnetic-semiconductor nanostructures. We will focus on the SOI induced modifications of the magnetic edge states (the snake and cycloid orbits of electron spin) and on the induction and manipulation of spin currents along magnetic interfaces. Finally, we’ll study side jump SOI as a mechanism to induce Spin Hall Drag in bilayers, coupled via Coulomb interaction. We put forward a method to probe electron spins in spatially separated layers with many-body interaction, and vice versa.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural sciencesphysical sciencesatomic physics
- natural sciencesphysical scienceselectromagnetism and electronicsspintronics
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Call for proposal
FP7-PEOPLE-IIF-2008
See other projects for this call
Funding Scheme
MC-IIFR - International incoming fellowships (Return phase)Coordinator
0025 Yerevan
Armenia