Project description
A novel quantum sensor-based NMR tool for studying single cells
To understand biological phenomena, scientists often study mixed-cell populations. However, cell heterogeneity may mask characteristics that emerge from single cells, necessitating the development of single-cell technologies. Nuclear magnetic resonance (NMR) spectroscopy is a key analytical tool that offers high molecular specificity in a non-invasive manner, but its low sensitivity renders it unsuitable for single-cell studies. The EU-funded SingleCellQNMR project is based on a recently developed diamond quantum sensing technique that allows the detection of NMR signals from tiny volumes, such as from a single cell. Using this technology, scientists plan to analyse and quantify metabolites at the single-cell level over time.
Objective
Single-cell events are often responsible for biological phenomena, such as drug resistance, cell development or tumorigenesis. Studies on cellular populations mask such characteristics and make single-cell technologies essential for understanding cell biology. However, one of the major analytical tools with the advantage of high molecular specificity and non-invasiveness, nuclear magnetic resonance (NMR) spectroscopy, has been limited in its application to single-cell studies due to its intrinsic low sensitivity.
Here, I aim to overcome this limitation by a unique combination of (i) highly sensitive quantum sensors for NMR detection with (ii) microfluidics and (iii) advanced hyperpolarization methods. The pioneering SingleCellQNMR project is based on my recently developed NMR technology for microscopic sample volumes using nitrogen-vacancy (NV) centers in diamond. These defects act as atomic-sized magnetic quantum sensors and are the ideal tool to detect NMR signals from smallest volumes, such as from a single cell. A second-generation quantum diamond spectrometer with integrated hyperpolarization capabilities will be developed here to match the high technical requirements for single-cell studies. It will be a new transformative tool to study:
a) Single-cell metabolomics. The high molecular specificity of NV-NMR will be used to analyse and quantify metabolites on the single-cell level noninvasively. Cells will be exposed to external stimuli such as drugs and their individual metabolic response will be monitored over time.
b) Single-cell water diffusion and relaxation-based contrast. Water diffusion and proton relaxation will be measured on a single-cell level. This will allow for the investigation of microstructures and to record data for validating current models of magnetic resonance imaging contrast.
The SingleCellQNMR project will develop a ground-breaking non-invasive tool and provide first results in a new era of single-cell studies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.