Project description
Microwave-to-optical photon converters could enable scalable quantum computers
Microwave qubits are a fast-developing approach to quantum computing. However, the qubits are very sensitive to environmental disturbances, so they need to be kept at very low temperatures. Connecting the qubits into larger systems without losing their fragile quantum properties is challenging, limiting their use outside the laboratory. Optical photons have great potential in tackling this issue as they can propagate with low noise at room temperature. The EU-funded QUSCALE project plans to build scalable converters that transform microwave into optical qubits. The new converters are expected to enable larger quantum processors and networks, to a level where quantum computers perform useful tasks far beyond the ability of classical systems.
Objective
Coherent quantum systems are globally pursued in the race to build a compelling technology. One fast-developing approach uses high-fidelity microwave qubits. Major research efforts in academia and industry are demonstrating an elementary form of supremacy over classical technology by moving to tens and hundreds of such cryogenic qubits. However, it is currently impossible to connect the qubits well beyond a single refrigerator while preserving their fragile quantum properties limiting their use outside the laboratory.
Optical photons, with their long-distance and near-noiseless propagation along room-temperature fibers, are uniquely placed to tackle this challenge. In QUSCALE, we will realize deployable converters between microwave and optical photons. We will build chips that convert between microwave and optical quantum information. The chips will let us increase the size of emerging quantum processors and networks to a level where we can perform useful tasks beyond the reach of classical systems.
To find use outside the laboratory, the converters must minimize the energy that is dissipated per converted qubit between microwaves and optics. Dissipated energy will determine whether microwave quantum processors can scale up via optics. We will achieve major reductions in the dissipated energy per converted qubit. The proposed devices will create a fundamentally new tool for physicists and engineers. They will enable a series of increasingly impactful networking tasks on the way to entanglement between distant microwave qubits, addressing an urgent need for optical interconnects between microwave quantum processors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences optics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.