Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum Thermodynamics in the Solid-state

Project description

A miniature electromechanical engine moves us full steam ahead into a new era of discovery

Quantum thermodynamics is facing the challenge of moving the 19th century laws of thermodynamics to the quantum realm. These laws that describe the interplay among temperature, heat, work, energy and entropy have applied equally well to black holes and living beings as they did to the 19th century locomotive engine. However, when shrinking machines down to the quantum size, many classical descriptions might not apply. Theory has outpaced experiment as is often the case for new ideas, largely due to lack of the experimental setups to test hypotheses and foster discovery. QuThenS will build an on-chip electromechanical engine that will open the door to a new era of discovery in the quantum regime.

Objective

I propose to realize an electromechanical engine in the solid state, opening a new era of experimental exploration of thermodynamics in open quantum systems. This project leverages recent breakthroughs in the nanoscale, my own advances in quantum devices and the extraordinary control and measurement of the vibrations and displacement which I have established in carbon nanotubes.
The theory of thermodynamics, commonly associated with the steam engines of the 19th century, is a universal set of laws that governs everything from black holes to the evolution of life. With modern technologies miniaturising devices to the atomic scale, thermodynamics has to be put to the test in a completely new realm.
Quantum thermodynamics is a rapidly advancing field of physics, but its theoretical development is presently far ahead of experimental tests. However, rapid breakthroughs in nanoscale fabrication and measurement are now presenting us with the opportunity to develop concrete experimental foundations for exploring quantum-thermodynamic processes. Understanding the peculiarities of thermodynamics in the quantum arena will be key for the construction of nanomachines, for energy harvesting, and to master the dissipation and thermalisation of quantum systems. It will also improve the engineering basis of quantum technologies by allowing fully informed choices on device design and optimisation and it may reveal possibilities for entirely novel technologies.
Realising these experiments, while now within reach, remains challenging due to the sophistication of the devices and the high-level control and measurement sensitivity that are required. My vision is to combine semiconductor qubit technology with my recent advances in nanoelectromechanical devices, to build an on-chip electromechanical engine that can access the quantum regime. My aim is to achieve unprecedented access to the particularities of thermodynamics at the nanoscale and pave the way for quantum nanomachines.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 990 397,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 990 397,00

Beneficiaries (1)

My booklet 0 0