Project description
Removing the barriers for machine learning applications in power systems
Data-driven approaches enable renewable energy companies and utilities to better manage the variable nature of renewable energy sources, and the uncertainties related to weather forecasts and component failures. Compared to traditional model-driven approaches, they are able to handle the sheer computational complexity of maintaining grid stability while being 250 – 1 000 times faster. However, power systems are safety-critical systems, and data-driven approaches cannot be applied if these systems remain a black box. The EU-funded VeriPhIED project will introduce data-driven methods that exploit the underlying physical properties of power systems. In particular, it will propose the development of physics-aware verifiable neural networks and a neural network training procedure that can supply by-design guarantees of the neural network prediction accuracy.
Objective
Measures against global warming require disruptive changes in the electricity sector. Drastically reducing CO2 emissions involves replacing bulk generation units with millions of renewable energy sources, along with a rapid increase of electricity demand. Maintaining the stability of the system with current approaches becomes not only computationally intractable, but also extremely costly. Recently proposed data-driven methods have been shown to handle the sheer complexity and have an impressive performance, achieving higher accuracy while being 250-1000 times faster than traditional methods. However, power systems are safety-critical systems, where data-driven methods will never be applied if they remain a black-box.
This proposal removes the barriers for the application of data-driven approaches in power system problems, proposing methods that exploit the underlying physical properties of power systems. We propose the development of physics-aware verifiable neural networks and a neural network training procedure that can supply by-design guarantees of the neural network prediction accuracy. Accuracy does no longer need to be a statistical metric. Instead, our methods can supply a provable upper bound of the prediction error over the whole input space, that the power system operators can trust. We further show how neural networks can capture non-linear constraints impossible to capture before, and can reduce any non-linear optimization problem to a tractable mixed-integer linear program with verified accuracy, potentially boosting computation speed and tractability. From a power systems context, this enables us to treat power system dynamics and optimization in a unified framework that accurately captures the true feasible region, removes various approximations, and eliminates redispatching costs, saving billions of euros per year. The proposed methods naturally extend beyond power systems, finding application to a wide range of physical safety-critical systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.