Project description
Novel photoelectrochemical cell for efficient sunlight to chemical energy conversion
Photoelectrochemical cells (PECs) that mimic photosynthesis are direct systems for converting sunlight to stored chemical energy and don’t involve unnecessary steps, such as converting sunlight to electricity. Despite their potential, current PECs are very inefficient in absorbing sunlight and mostly incorporate non-abundant or highly toxic elements. To address this problem, the EU-funded LICROX project aims to implement a new PEC that incorporates three complementary light-absorbing elements driving water oxidation and CO2 reduction. The latter consists of a tandem assembly that combines copper nanocatalysts with molecular catalysts made of only abundant elements. The best-in-class compounds will be used for validating several light-trapping mechanisms to enhance PEC's light-harvesting efficiency. The project will pave the way for a new scalable renewable energy technology that efficiently converts sunlight to stored chemical energy.
Objective
Photoelectrochemical cells (PECs) that mimic photosynthesis belong to the group of direct systems for converting sunlight to stored chemical energy. Common to those is the potential to become more efficient and cost effective because, unlike indirect ones, they do not involve unnecessary steps such as the sunlight to electricity conversion. Despite their greater potential, there is yet no direct conversion device that works on any technological scale. Indeed, there seems to be a large barrier linked to a poor PEC efficiency in absorbing sunlight and driving the catalysis for water oxidation (WO) and selective CO2 reduction (CO2R) to carbon-based compounds to store chemical energy. In addition, most PEC designs incorporate non-abundant or highly toxic elements precluding their future use at a larger scale.
In LICROX we will implement a new PEC type incorporating three complementary light absorbing elements driving WO and CO2R. The latter consists of a tandem assembly that combines Cu nanocatalysts with molecular catalysts made of only abundant elements. The best-in-class transition metal oxides for the photo -anode and -cathode semiconductors will be used in the PEC to validate several light trapping mechanisms which have been proven to be very effective in boosting the light harvesting efficiency in thin film solar cells. To accelerate the endeavor of converting the triple junction PEC proposed into a working technology for transforming light and CO2 into compounds capable of storing chemical energy, LICROX brings together an interdisciplinary team of scientists with a comprehensive expertise in materials chemistry, semiconductor physics, electrochemistry, and photonics from EPFL, TUM, ICIQ and ICFO. Designing a strategy by DBT to overcome societal resistance, LICROX will set the route for a new scalable renewable energy technology to be initially pushed towards an industrial implementation and commercialization by AVA, HST and a newly developed spin-off from ICFO.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology materials engineering coating and films
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.2. - FET Proactive
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETPROACT-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
43007 Tarragona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.