CORDIS provides links to public deliverables and publications of HORIZON projects.
Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .
Deliverables
The deliverable includes the description and prototypal implementation of an approach and tool for the automated resolution of bad practices in a CI/CD pipeline for CPS. Once the bad practice has been detected, this tool leverages the body of knowledge collected in D3.3 as well as historical data to recommend pipeline repairs.
Prototype of a toolset enabling balancing of co-simulation and physical testing (opens in new window)The toolset integrates solutions to balance testing based on simulation and testing in physical environments. It relies on machine learning to evaluate and improve the quality of simulation predictions and minimize physical testing.
Build schedule tool prototype (opens in new window)The deliverable provides a tool that determines which type of test to use at build stage depending on the changes applied to both test and production code. The build will consider both manually-written tests or those generated in D5.3.
Prototype of a trace diagnostics toolset for checking signal-based properties of CPS (opens in new window)The toolset will extend run-time verification techniques to provide informative feedback to the user in case run-time verification yields a negative verdict.
Prototype of a toolset supporting automated testing in co-simulated environments (opens in new window)The toolset will leverage model-based techniques, meta-heuristic search, and machine learning to drive testing in co-simulated environments. It will integrate meta-heuristic search and machine learning to select test inputs based on specification models.
Prototype of evolutionary toolsets enhanced by machine learning to support security vulnerability testing (opens in new window)The toolset will automatically identify inputs triggering vulnerabilities. It will rely on machine learning to process software data such as source code and change information.
Automated bad practice detectors for CPS DevOps pipelines (opens in new window)The deliverable includes the description and prototypal implementation of an approach and tool for the automated identification of bad practices in DevOps CI/CD pipelines targeting CPS. The detector will feature antipatterns elicited in D3.2 for which the automated detection is deemed feasible and appropriate.
AI-based Prototypes supporting CPS selfadaptability (opens in new window)COSMOS aims to increase CPS Self-adaptability to Diverse Contexts. Thus, D6.4 aims at delivering a framework integrating a set of metrics and tools, which are adequate for improving CPS self-adaptability to unprecedented contextual scenarios.
Prototype of a toolset supporting automated testing in physical environments (opens in new window)The toolset will leverage machine learning to enable automated testing in physical environments. Machine learning will enable the definition of strategies for the generation of safe test inputs, the identification of solutions for the prediction of execution results, and the automated identification of failures.
Prototypes for the Quality Assessment and Monitoring of CPS in the Field (opens in new window)To better monitor and assess CPS development and evolution, COSMOS aims to integrate DevOps tools based on CPS specific test mutations and coverage criteria, code/test smells (partially investigated in WP 5), anti-patterns (investigated also in WP 3), and vulnerabilities that can affect/concern HIL activities. Thus, D6.3 aims at delivering a framework integrating a set of metrics and tools, which are more adequate for CPS monitoring, as they enable a better CPS quality assessment as well as the detection and self-recovery of different forms of CPS degradation.
Tools enabling the Two-speed DevOps cycle for CPS (opens in new window)COSMOS extends traditional DevOps pipelines developing AI-based solutions to support short and expensive DevOps cycles for CPS. Thus, D6.2 aims at delivering a prioritization framework designed and implemented to contribute to the reduction of testing costs of CPS. This framework leverages a set of metrics and tools integrated into CPS DevOps pipelines, that allow to select/prioritize the CPS changes that should be verified within the fast and/or the slow cycle, focusing on the one that can lead to failures and unexpected behaviors.
Test generation tool prototype (opens in new window)The deliverable consists of a test case generation tool that synthetizes unit-level tests from high-level, expensive tests. The tool will rely on meta-heuristics, static and dynamic seeding, and test carving techniques.
Prototype handling CPS Change & Behavioral models in CI/CD pipelines for CPS (opens in new window)COSMOS extends traditional DevOps pipelines to cater for specific failures occurring in CPS, this for supporting their automated detection, prediction, and fixing. Thus, D6.1 aims at delivery of tools for the automated extraction of change and behavioral models, as well as tools leveraging these models to enable the CPS behavior/failure monitoring, prediction, and self-healing.
Prototype of a toolset for run-time verification of CPS (opens in new window)The toolset will provide run-time verification techniques for checking signal-based temporal properties on CPS execution traces both in offline and in online settings.
Complete framework of test generation and build schedule tooling (opens in new window)The deliverable extends and completes D5.3 and D5.4 in two ways. First, it will include additional testing strategies for CPS: (1) test oracle enhancer, (2) test case generation based on User Feedbacks. Second, this delivery will update the build schedule based on the new type of tests generated in this deliverable.
Complete framework, refining quality assessment and self-adaptability solutions (opens in new window)COSMOS's initial frameworks and tools are refined and evaluated, over the course of the project, by considering the COSMOS's case studies; these activities will be performed in an incremental, continuous manner, to help to consolidate and further assess the implemented quality assessment and self-adaptability solutions.
Prototype of a toolset for specification-based functional security testing of CPS (opens in new window)The toolset will rely on high-level specifications of attacks and security properties to automate security testing.
Prototype of a toolset for code analysis of CPS (opens in new window)The toolset will include analysis techniques to enable security audit of CPS code bases.
Prototype of a toolset for machine learning-enabled detection of vulnerabilities in CPS (opens in new window)The toolset will rely on machine learning to identify inputs triggering anomalous execution flows that characterize vulnerabilities. The analysis will be based on data collected at development time and in the field.
Prototype tool for the smart allocation of jobs on HiL and simulators, and build prioritiziation (opens in new window)The deliverable includes the description and prototypal implementation of a plugin for CI/CD servers (e.g., available for Jenkins or other popular pieces of technology) capable of exploiting the (limited) availability of simulators and HiL, and consequently allocate CI/CD jobs on them, by also prioritizing incoming builds based on their predicted execution time and on other features.
A public website describing the project objectives approach partners involved and expected results in the initial version Later updates will include access to public deliverables downloadable papers and articles and other information about the project The website will be updated periodically
Approach for the smart allocation of jobs on HiL and simulators, and build prioritisation (opens in new window)The report describes an approach for combining the allocation of simulators and hardware with test prioritization and statistical techniques in support of smart allocation of test jobs on simulators and physical devices
Handbook of refactoring of production code + prototype refactorings (opens in new window)The report provides an overview of refactoring operations to address antipatterns in DevOps pipelines The outcome will be a handbook of refactoring and a prototype of a recommending system for refactoring opportunities
Framework of metrics for production code anti-patterns for DevOps (opens in new window)The report collects source code metrics that are related to antipatterns in DevOps pipelines These metrics will be determined via software repository mining techniques and statistical analyses
Press and Media Materials (opens in new window)A Press Release and other supporting materials for creating awareness of the first prototype technologies availability and initial industrial evaluations.
Methodology for setting-up CI/CD pipelines for CPS (opens in new window)The report provides methodological insights on how to configure a pipeline for CPS, leveraging the approaches and tools developed in WP4-WP6. That is, this WP constitutes the methodology necessary to frame and properly apply COSMOS approaches and tools onto CPS development projects.
Integrated Platform - Interim Version (opens in new window)This deliverable will comprise a software prototype and a report The prototype will synthesise relevant technical contributions from work packages 36 into an integrated platform The report will outline the architecture of the platform and the extension points that tool developers can leverage to integrate additional technologies with the platform
Catalogue of good and bad practices of DevOps for CPS (opens in new window)The report provides a catalogue of patterns and antipatterns related to the application of DevOps in CPS developments Such patterns and antipatterns will be elicited through an analysis using groundedtheory methodologies of data collected in D31 as well as by mining information from software repositories
Project Presentation and Brochure (opens in new window)Materials to present the project to interested parties including details on the technical challenges and the approaches being developed within the project to address the challenges the expected impact from both a technical and societal standpoint and where to obtain further information and details concerning the project research and development work
Evaluation Methodology (opens in new window)This deliverable builds upon the initial Evaluation Plan from workpackage 1 to provide a detailed specification of the evaluation methodologies and measurements that will be carried out for each of the four Use Cases It will include the scope of validation activities the metrics KPIs to be evaluated comprising targets such as productivity efficiency economical benefits and the associated test cases and methods to gather and evaluate these measures
Report on a high-level specification language for signal-based properties of CPS (opens in new window)The report describes a domainspecific language for expressing typical patterns of signalbased temporal properties eg spike and oscillatory behaviors
Integrated Platform - Final Version (opens in new window)This deliverable will provide the final version of the integrated platform (an interim version of which was delivered in D7.1) that will now include the final versions of all the tools developed in the project.
Publications
Author(s):
Jan Prochazka,Petr Novobilsky, Dana Prochazkova
Published in:
Proceedings of the 31st European Safety and Reliability Conference, 2021
Publisher:
Research Publishing
Author(s):
Derakhshanfar, Pouria; Devroey, Xavier
Published in:
Proceedings of the 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST), 2022
Publisher:
IEEE
DOI:
10.1145/3526072.3527528
Author(s):
Derakhshanfar, Pouria; Devroey, Xavier; Perrouin, Gilles; Zaidman, Andy; Deursen, Arie Van
Published in:
14th IEEE Conference on Software Testing, Verification and Validation (ICST), 2021
Publisher:
IEEE
DOI:
10.1109/icst49551.2021.00039
Author(s):
Panichella, S., Zaugg, N.
Published in:
Empirical Software Engineering, 2021
Publisher:
Springer
DOI:
10.1007/s10664-020-09870-3
Author(s):
Blattner, Timo; Birchler, Christian; Kehrer, Timo; Panichella, Sebastiano
Published in:
Arxiv, 2024
Publisher:
Cornel University
DOI:
10.48550/arxiv.2401.14682
Author(s):
Olsthoorn, Mitchell; Derakhshanfar, Pouria; Panichella, Annibale
Published in:
arXiv, 2021
Publisher:
Cornel University
DOI:
10.48550/arxiv.2108.05466
Author(s):
Fiorella Zampetti, Vittoria Nardone, Massimiliano Di Penta
Published in:
Proceedings 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022
Publisher:
IEEE
Author(s):
Sajad Khatiri; Sebastiano Panichella; Paolo Tonella
Published in:
2023 IEEE Conference on Software Testing, Verification and Validation (ICST), 2022
Publisher:
IEEE
DOI:
10.1109/icst57152.2023.00034
Author(s):
Birchler, Christian; Rohrbach, Cyrill; Kim, Hyeongkyun; Gambi, Alessio; Liu, Tianhai; Horneber, Jens; Kehrer, Timo; Panichella, Sebastiano
Published in:
IEEE International Conference on Automated Software Engineering (ASE), 2023
Publisher:
IEEE
DOI:
10.1109/ase56229.2023.00154
Author(s):
Christian Birchler; Nicolas Ganz; Sajad Khatiri; Alessio Gambi; Sebastiano Panichella
Published in:
Proceedings 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering, 2022
Publisher:
IEEE
DOI:
10.1109/saner53432.2022.00030
Author(s):
Joshua Heneage Dawes; Donghwan Shin; Domenico Bianculli
Published in:
Proceedings Fundamental Approaches to Software Engineering, 2023, ISBN 978-3-031-30826-0
Publisher:
Springer
DOI:
10.1007/978-3-031-30826-0_14
Author(s):
Kallis, Rafael; Chaparro, Oscar; Di Sorbo, Andrea; Panichella, Sebastiano
Published in:
2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE), 2022
Publisher:
IEEE
DOI:
10.1145/3528588.3528664
Author(s):
Rafael Kallis; Andrea Di Sorbo; Gerardo Canfora; Sebastiano Panichella
Published in:
arXiv, 2021
Publisher:
Cornel University
DOI:
10.48550/arxiv.2107.09936
Author(s):
Erni, Nicolas; Ali Mohammed, Al-Ameen Mohammed; Birchler, Christian; Derakhshanfar, Pouria; Lukasczyk, Stephan; Panichella, Sebastiano
Published in:
Proceedings of the 17th International Workshop on Search-Based and Fuzz Testing (SBFT@ICSE 2024), 2024
Publisher:
Cornel University
DOI:
10.5281/zenodo.10554259
Author(s):
Antonio Mastropaolo; Fiorella Zampetti; Gabriele Bavota; Massimiliano Di Penta
Published in:
ICSE '24: Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, Issue 30, 2024
Publisher:
ACM
DOI:
10.1145/3597503.3623351
Author(s):
Vincenzo Riccio; Fiorella Zampetti; Alessio Gambi; Sebastiano Panichella
Published in:
IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST), 2021
Publisher:
IEEE
DOI:
10.1109/sbst52555.2021.00011
Author(s):
Joshua Heneage Dawes & Domenico Bianculli
Published in:
Proceedings International Conference on Runtime Verification, 2021
Publisher:
Springer
Author(s):
Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota,Massimiliano Di Penta
Published in:
Proceedings 2021 IEEE International Conference on Software Maintenance and Evolution, 2021
Publisher:
IEEE
DOI:
10.1109/icsme52107.2021.00048
Author(s):
Pouria Derakhshanfar; Xavier Devroey; Andy Zaidman
Published in:
Empirical Software Engineering, 2022, ISSN 1382-3256
Publisher:
Kluwer Academic Publishers
DOI:
10.1007/s10664-022-10155-0
Author(s):
Hadadi, Fatemeh; Dawes, Joshua H.; Shin, Donghwan; Bianculli, Domenico; Briand, Lionel
Published in:
Empiracal Software Engineering, 2024, ISSN 1382-3256
Publisher:
Kluwer Academic Publishers
DOI:
10.48550/arxiv.2303.07230
Author(s):
Devroey, Xavier; Gambi, Alessio; Galeotti, Juan Pablo; Just, René; Kifetew, Fitsum; Panichella, Annibale; Panichella, Sebastiano
Published in:
Software Testing, Verification and Reliability, 2022, Page(s) 00:1–22, ISSN 1099-1689
Publisher:
Wiley
DOI:
10.48550/arxiv.2106.07520
Author(s):
Chaima Boufaied; Claudio Menghi; Domenico Bianculli; Lionel C. Briand
Published in:
Transactions on Software Engineering, 2023, ISSN 0098-5589
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tse.2023.3242588
Author(s):
Andrea Di Sorbo; Fiorella Zampetti; Aaron Visaggio; Massimiliano Di Penta; Sebastiano Panichella
Published in:
Transactions on Software Engineering and Methodology, 2023, ISSN 1049-331X
Publisher:
Association for Computing Machinary, Inc.
DOI:
10.1145/3564821
Author(s):
Fiorella Zampetti; Damian Tamburri; Sebastiano Panichella; Annibale Panichella; Gerardo Canfora; Massimiliano Di Penta
Published in:
Transactions on Software Engineering and Methodology, 2023, ISSN 1049-331X
Publisher:
Association for Computing Machinary, Inc.
DOI:
10.1145/3571854
Author(s):
Christian Birchler; Sajad Khatiri; Bill Bosshard; Alessio Gambi; Sebastiano Panichella
Published in:
Empirical Software Engineering, 2023, ISSN 1382-3256
Publisher:
Kluwer Academic Publishers
DOI:
10.1007/s10664-023-10286-y
Author(s):
Annibale Panichella; Sebastiano Panichella; Gordon Fraser; Anand Ashok Sawant; Vincent J. Hellendoorn
Published in:
Empirical Software Engineering, 2022, ISSN 1382-3256
Publisher:
Kluwer Academic Publishers
DOI:
10.1007/s10664-022-10207-5
Author(s):
Fiorella Zampetti; Ritu Kapur; Massimiliano Di Penta; Sebastiano Panichella
Published in:
Journal of Systems and Software, 2022, ISSN 0164-1212
Publisher:
Elsevier BV
DOI:
10.1016/j.jss.2022.111425
Author(s):
Nazanin Bayati Chaleshtari; Fabrizio Pastore; Arda Goknil; Lionel C. Briand
Published in:
Transactions on Software Engineering, 2023, ISSN 1939-3520
Publisher:
IEEE
DOI:
10.1109/tse.2023.3256322
Author(s):
Pooja Rani; Arianna Blasi; Nataliia Stulova; Sebastiano Panichella; Alessandra Gorla; Oscar Nierstrasz
Published in:
Journal of Systems and Software, 2023, ISSN 0164-1212
Publisher:
Elsevier BV
DOI:
10.1016/j.jss.2022.111515
Author(s):
Pouria Derakhshanfar; Xavier Devroey; Annibale Panichella; Andy Zaidman; Arie van Deursen
Published in:
IEEE Transactions on Software Engineering, 2022, ISSN 0098-5589
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tse.2022.3209625
Author(s):
Ul Haq, Fitash; Shin, Donghwan; Briand, Lionel
Published in:
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, ISSN 1558-1225
Publisher:
IEEE
DOI:
10.1109/icse48619.2023.00155
Author(s):
Christian Birchler; Sajad Khatiri; Pouria Derakhshanfar; Sebastiano Panichella; Annibale Panichella
Published in:
ACM Transactions on Software Engineering and Methodology, Issue 1049331X, 2022, ISSN 1049-331X
Publisher:
Association for Computing Machinary, Inc.
DOI:
10.1145/3533818
Author(s):
Gerardo Canfora; Andrea Di Sorbo; Sebastiano Panichella
Published in:
Information and Software Technology, 2021, ISSN 0950-5849
Publisher:
Elsevier BV
DOI:
10.1016/j.infsof.2021.106665
Searching for OpenAIRE data...
There was an error trying to search data from OpenAIRE
No results available