Project description
Europe leads the charge in homegrown and green lithium refining
Rechargeable lithium-ion batteries are behind our most cherished mobile devices, including cell phones, tablets and laptops. They are also supporting the roll-out of electric vehicles and stationary energy storage systems for renewables that together have the potential to drastically decrease CO2 emissions globally. Of critical importance for Europe will be establishing a European battery supply chain including ensuring a steady supply of battery-grade lithium. The EU-funded SOLVOLi project is scaling up its technology to deliver battery-grade lithium salts – by Europe, for Europe – in a process that also consumes less water and energy than the current state of the art used in other countries, while significantly reducing the associated CO2 emissions.
Objective
To allow the rollout of e-mobility and stationary renewable energy storage in Europe, a secure, affordable and sustainable supply of battery-grade lithium salts for Li-ion batteries (LIBs) is key. However, Europe’s lithium supply chain is extremely vulnerable: Europe’s primary lithium resources (present as “hard rock”) are underexploited and, even if lithium would be mined domestically, there is no lithium refining capacity available in Europe to process the lithium into battery-grade lithium salts, i.e. Li2CO3 and LiOH (with the latter being vital for the emerging Li-ion NMC battery chemistries with lower Co and enriched Ni content). Concurrently, the state of the art Li2CO3 refining methods (cf. China, Latin America…) come with a large eco-footprint, while the conventional conversion of Li2CO3 to the coveted LiOH generates vast volumes of waste and introduces new impurities.
Based on an innovation developed in the PI’s ERC Advanced Grant SOLCRIMET, SOLVOLi aims to develop the Proof of Concept for a disruptive, solvometallurgical flowsheet for the production, via LiCl, of LiOH. As this flowsheet allows to bypass the Li2CO3 step, SOLVOLi lowers the overall water, energy, CO2 and reagent footprint of LiOH production. Apart from validating and pre-demonstrating the novel flowsheet, SOLVOLi comprises a thorough IPR and upscaling strategy, in close collaboration with EU-based companies. SOLVOLi takes advantage of the fact that most of their decisions on lithium refining investments in Europe still need to be made, opening the door for the commercialisation of the new SOLVOLi process.
Application of this flowsheet contributes to building up the urgently needed lithium refining capacity in Europe for both domestic lithium (hard rocks & slags from pyrometallurgical LIB recycling) and imported lithium resources. As such, SOLVOLi facilitates the EC's strategic battery value chain ambitions (COM(2019)176)) and supports A New Industrial Strategy for Europe (COM(2020)102).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electric batteries
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences chemical sciences inorganic chemistry alkali metals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.