Description du projet
Une nouvelle approche des portes logiques supraconductrices pourrait inaugurer une nouvelle ère de la superinformatique
Les calculatrices ont constitué une amélioration majeure par rapport au crayon et au papier, mais les ordinateurs ont véritablement révolutionné notre capacité à effectuer des calculs, en augmentant de manière exponentielle le nombre et la complexité des calculs réalisables en une fraction de temps. Les superordinateurs reposant sur des portes logiques quantiques supraconductrices ont encore étendu ces possibilités. Ils s’avèrent de plus en plus précieux dans de nombreux domaines, mais sont confrontés à des défis en termes d’amélioration des performances associée à une réduction de la consommation d’énergie. Le projet SuperGate, financé par l’UE, développera une nouvelle approche de la logique supraconductrice qui permettra des performances égales ou supérieures tout en minimisant les problèmes actuels, inaugurant ainsi la prochaine évolution des superordinateurs.
Objectif
Supercomputers are playing an increasingly important role for our society by performing calculations with a variety of implications ranging from weather forecasting to genetic material sequencing to testing of drugs for new diseases. Enhancing the performance of modern supercomputers, whilst minimising their energy losses, represent two contrasting but major needs that the information technology industry will have to address in the future.
The best solution proposed to date to reduce the energy costs of supercomputers without affecting their performance is based on hybrid computing architectures, where a semiconductor part based on complementary metal-oxide semiconductor (CMOS) technology and used for memory operations is combined at low temperatures with logic circuitry offering minimal energy losses thanks to the usage of superconductor (S) materials. Existing superconducting logics, which relies on rapid single flux quantum (RSFQ) technology, however, it is difficult to interface with CMOS and to scale up and it is sensitive to magnetic perturbations – which are the main reasons why hybrid platforms have not replaced CMOS systems despite their advantages.
Starting from our recent discovery that the logic state in some S devices can be controlled via the field effect (FE), in this project we propose to develop a new technology for superconducting logics that can offer performance at least comparable to that of RSFQ logics whilst overcoming all its drawbacks. We will adopt a systematic approach aiming at (i) understanding of the FE in a S, (ii) determining the S materials and device geometry with optimised performance, (iii) testing the dynamic response of optimised devices, (iv) developing logic circuits based on such devices and (v) testing a logic circuit in conjunction with a CMOS electro-optical modulator. We will also establish technology transfer and pave the way for the commercialisation of our technology, which can revolutionise the world of supercomputer.
Champ scientifique
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesmathematicspure mathematicsgeometry
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
78464 Konstanz
Allemagne