Objective
The aim of the project is to improve shape design in the aeronautical industry by developing mathematical and engineering tools using supercomputers. In situations where the numerical simulations of aircraft by computers are in current use, optimization methods provide a powerful aid to engineers to improve their designs.
Subsonic and transonic airfoil and wing optimization procedures have been developed to treat optimization problems namely drag minimization, lift maximization or target pressure recovery with possible non linear constraints to satisfy geometrical requirements and control aerodynamic characteristics in off-design conditions. The most innovative outcomes of this project concern progress accomplished in design with Euler solvers, fast one pass inverse methods for rotational flows, parametrisation of non linear surfaces, hierarchical multi level method for control variables and automatic adaptive remeshing.
Results obtained from a workshop indicate quite large discrepancies both in design due to the quality of the flow analysis solver and the parametrisation of the shape and also in efficiency with the choice of the optimiser. These comparisons can provide useful guidelines for choosing optimization or inverse methods with inviscid potential or Euler flows.
It is clear that access to practical 3-D applications including viscous effects in an industrial environment requires still an important effort. In particular cost effective designs of good quality achieved with the above methodologies and their associated algorithms should have to be implemented in a near future on parallel architectures.
The partners have experimented with optimum design methods in the past. Now that computers are more powerful, it is believed that systematic 2-dimensional and 3-dimensional optimization of aircraft configurations can be implemented by industry. The aim of this study is to validate this point and to develop the tools necessary for this implementation.
The study will cover optimal design for the compressible inviscid flow equations produced by advanced numerical techniques. Particular attention will be devoted to the development of fast algorithms adapted to the problem (which usually contains several non-linear constraints), using modern minimization algorithms, to obtain reliable adaptive mesh generators when the shape of the configuration being studied is changed and to write user-friendly interactive graphic tools to monitor the generated shapes. Simple engineering methods will be also investigated as inverse problem techniques. At the end of this project, a workshop will take place to validate the developed methodologies on a few test cases including wing fuselage design, multi-airfoil design and air intake design.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.