Objective
The overall objective of the COLDZYME project is to make possible the biotechnological exploitation of cold-active (psychrophilic) enzymes, by gaining an understanding of how such proteins are folded to be active at low temperatures and how they are regulated in psychrophilic microorganisms. This overall objective will be achieved via a series of specific aims: (a) A physiological/biochemical and molecular genetical investigation of the regulation of activity, turnover and secretion of selected cold-active enzymes in psychrophilic bacteria and yeasts (as "cell factories"), and the influence of thermal stresses on these processes, using existing collections of psychrophiles and from screening of new samplings from cold habitats. (b) The purification and crystallization of selected cold-active enzymes, and the cloning and over- expression of their genes, for the determination of the molecular basis of protein folding, flexibility and enzymic activity at low temperatures.
(c) The discovery and production by site-directed mutagenesis of cold-active enzymes with enhanced activity/stability at low temperatures, and their purification and testing in an industrial context, including the use of immobilised cells/enzymes for their exploitation in low-temperature biotechnology.
Compared with the enzymes from mesophilic and thermophilic (micro)organisms, knowledge about cold- active enzymes from psychrophiles is meagre, which is regrettable because recently it has been realised that there is a broad spectrum of potential biotechnological applications for cold-active enzymes and the psychrophilic microorganisms from which they are derived. The results of this project will be of both fundamental importance in understanding protein structure and applied significance in biotechnology. The major involvement of industrial partners in the proposed project will ensure that some of the potential avenues for exploitation will be explored, thus paving the way for further developments.
The project will involve two major fundamental and one applied experimental approaches: the fundamental approaches will investigate the
physiology/biochemistry of psychrophilic bacteria as "cell factories" and the molecular structure and dynamics of psychrophilic enzymes at low temperatures; the (third) applied experimental approach will explore the low-temperature stability of psychrophilic enzymes and explore their biotechnological potential. A few representative intracellular and extracellular enzymes have been selected so that in-depth study can be balanced with a reasonably broad perspective, on the bases that there is comparative data available on their structure, that sufficient background work has been performed (largely by the proposed participants themselves), and on their industrial relevance. The work will be organized in three work packages. The first, psychrophile physiology7 will consist of the isolation of new psychrophiles and the screening of these and existing collections for their efficient production of cold-active enzymes; investigation of the physiological activity and regulation of selected coldactive enzymes in psychrophilic bacteria and yeasts, and of recombinant enzymes in psychrophilic/mesophilic hosts. The second, enzyme structure, will involve the purification, sequencing and crystallization of selected psychrophilic enzymes, and the cloning/expression of their genes, for the determination of protein three-dimensional structure and molecular dynamics e.g.
by X-ray crystallography and NMR. In the third, enzyme biotechnology, enzymes having improved cold-active properties (enhanced activity/stability) will be selected from those obtained from new psychrophiles or produced by site-directed mutagenesis, in order to scale up their purification and production for testing (together with native enzymes) in an industrial context. Particular emphasis will be placed on enhancing enzyme stability without concomitant loss of activity, either by protein engineering or by the use of immobilised cells/enzymes.
Fields of science (EuroSciVoc)
- natural sciences biological sciences microbiology bacteriology
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- natural sciences biological sciences biochemistry biomolecules proteins protein folding
- medical and health sciences basic medicine physiology
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
TN25 5AH Wye
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.