Skip to main content

IMPROVEMENT OF THE BIOCOMPATIBILITY AND MODIFICATION OF PERMEABILITY PROPERTIES OF MEDICAL PLASTICS BY PLASMAPOLYMERIZATION TECHNIQUES

Objective


The group succeeded in modification of the device surfaces (including the inner surface of tubes) in order to obtain hydrophilic surfaces, and thereby to decrease the bacterial adhesion, at least in vitro. This was documented to be true for most types of plastics which are used for Medical Devices today. However, no statistical significant effect could be demonstrated in an in vivo model including plasma modified and unmodified samples of PE.
As the bacterial adhesion differs very much depending on the kind of plastic material, the effect of plasma modification needs to be investigated in vivo of each relevant material, before any generalisation can take place.
The plasma modification process did not alter the biocompatibility of the PE-samples in the above in vivo experiment. This also needs to be examined in each cases.

By use of plasma processes the team succeeded in improving the permeability and create a barrier to relevant test gasses in order to be able to use alternative materials to soft PVC in production of medical bags.

We managed to develop compounds with kinking and mechanical properties better than the commercial PVC-alternatives tested, but not as good as PVC.

The possibilities of using plasma processes as a simultaneous sterilization method were documented to be very promising. It was demonstrated that active species in different plasmas were able to destroy test bacteria.
The increasing application of medical devices has caused a dramatic increase in the number of device-related infections. At the same time the part of the European Medical Device Industry dealing with plastics is faced by environmental demands for finding alternatives to PVC as well as toxicological demands for finding an alternative to the ethylene-oxide sterilization method.

The objectives of this research are therefore by strategic efforts to solve these problems including technical development within plasmapolymerization techniques.

The research will include the development and optimization of medical plastics by compounding techniques as well as development and improvement of biological tests for evaluation of the ability of the developed materials to resist infections.

Call for proposal

Data not available

Coordinator

Danish Technological Institute (DTI)
Address
Gregersensvej
DK-2630 Taastrup
Denmark
 

Participants (4)

BAXTER R&D EUROPE
Belgium
Address
7 Rue Du Progres
1400 Nivelles
 
Plasma Technology Ltd
United Kingdom
Address
North End Yatton
BS19 4AP Bristol
 
STATENS SERUMINSTITUT
Denmark
Address
Artillerivej 5
2300 Copenhagen S
 
TOTAX PLASTIC A/S
Denmark
Address
Staktoften 22
2950 Vedbaek