Objective
Knowledge of aluminium alloys is recent and limited in comparison with steel know-how. Collection of existing data has identified actual possibilities and has selected appropriate alloys for sheet materials, cast parts and extruded profiles. Evaluation of physical and mechanical characteristics of the aluminium alloys with indication of their mechanical and thermal properties have given the engineering choices. A review of shaping processes such as deep drawing, bake hardening, casting, bending, welding, have determined better metallurgical capabilities and define the precise process conditions to be chosen. Representative specimens have been tested in simulated conditions for stiffness, fatigue, impact... for estimation of the service life behaviour of assembled structural parts. Conventional procedure tests have been performed on several high strength aluminium alloys after simulative process conditions in order to determine the levels of mechanical properties such as tensile, stiffness, impact and fatigue strength. These determinations allowed to quantify the possibility of weight reduction such as 40% using 120Mpa fatigue strength aluminium alloys (A 356 for instance) for body panels. This precompetitive work has established a guideline in the choice of materials and specification for design of vehicle and has supplied data information in forming processes for manufacturing of vehicle.
The use of aluminium alloys for vehicle body structures can result in a 40% weight saving but there are some technical barriers for their application in mass production. This project will select high strength aluminium alloys for their general behaviour in service life.Characteristics of aluminium alloys products as sheet materials, cast parts and extruded profiles will be determined for optimized design of body structure with mechanical properties testing such as tensile strength, ductility, impact strength, stiffness and fatigue resistance. Metallurgical compatibility of aluminium alloys in such shaping processes as drawing, bending, casting, heat treatment, assembling, paint baling,... will be evaluated for optimization of manufacturing processes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymechanical engineeringmanufacturing engineering
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
Data not availableFunding Scheme
CSC - Cost-sharing contractsCoordinator
92500 RUEIL-MALMAISON
France