Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-04-19

LOW WEIGHT VEHICLE PROPERTIES OF ALUMINIUM ALLOYS FOR BODY STRUCTURES

Objective


Knowledge of aluminium alloys is recent and limited in comparison with steel know-how. Collection of existing data has identified actual possibilities and has selected appropriate alloys for sheet materials, cast parts and extruded profiles. Evaluation of physical and mechanical characteristics of the aluminium alloys with indication of their mechanical and thermal properties have given the engineering choices. A review of shaping processes such as deep drawing, bake hardening, casting, bending, welding, have determined better metallurgical capabilities and define the precise process conditions to be chosen. Representative specimens have been tested in simulated conditions for stiffness, fatigue, impact... for estimation of the service life behaviour of assembled structural parts. Conventional procedure tests have been performed on several high strength aluminium alloys after simulative process conditions in order to determine the levels of mechanical properties such as tensile, stiffness, impact and fatigue strength. These determinations allowed to quantify the possibility of weight reduction such as 40% using 120Mpa fatigue strength aluminium alloys (A 356 for instance) for body panels. This precompetitive work has established a guideline in the choice of materials and specification for design of vehicle and has supplied data information in forming processes for manufacturing of vehicle.
The use of aluminium alloys for vehicle body structures can result in a 40% weight saving but there are some technical barriers for their application in mass production. This project will select high strength aluminium alloys for their general behaviour in service life.Characteristics of aluminium alloys products as sheet materials, cast parts and extruded profiles will be determined for optimized design of body structure with mechanical properties testing such as tensile strength, ductility, impact strength, stiffness and fatigue resistance. Metallurgical compatibility of aluminium alloys in such shaping processes as drawing, bending, casting, heat treatment, assembling, paint baling,... will be evaluated for optimization of manufacturing processes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

RENAULT
EU contribution
No data
Address
9/11 AVENUE DU 18 JUIN 1940
92500 RUEIL-MALMAISON
France

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (14)

My booklet 0 0