Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-04-16

Highly reactive rare-earth powders for more efficient luminescent materials (RELUM)

Objective

The first objective of this project is to develop more reactive rare earth oxide powders with improved morphology and a reduced level of those impurities that have a detrimental effect on the luminescent performance.

The second objective is to use these improved rare earth oxide powders to develop a process for the preparation of more efficient luminescent powders with narrower particle size distribution.
1. By improving the quantum yield of the red phosphor YOX and the green phosphor CBT, an increase of 2.5% in luminous efficacy of /80 lamps was reached.

2. The luminous efficacy of YOX, for 254 nm excitation, is decreased, due to competitive absorption by impurities, c.q. transition metal ions and defects, like interstitial oxygen.

3. The green phosphors LAP and CBT are efficiently quenched by Eu3+, due to an electron transfer process.

4. In CBT transition metal ions decrease the luminous efficiency of Ce3+, Gd3+ and Tb3+, since they are incorporated in the lattice, energy transfer to these impurity ions is possible.

5. An amorphous surface layer on a phosphor particle is observed with HR TEM.
It is concluded that Cr3+ is not incorporated into either LAP or CBT, but is present in an amorphous second layer.

6. By changing process conditions during the production of the rare earth oxides it is possible to produce these starting materials with improved specifications.

7. Using mixed oxides instead of separate oxides as starting materials the highest quantum yield was found.
Mixed oxides have an optimal distribution of the activator, so no concentration quenching will occur on a micro scale.

8. By using mixed oxides in the production of phosphors the grainsize distribution has become narrower and better controlled and so the coating weight was lowered in fluorescent lamps resulting in costprice reduction.

9. Both higher efficacy (lm/W) and costprice reduction will lead to an acceleration of the replacement of incandescent lamps by (compact) fluorescent lamps and thus a considerable energy saving.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Data not available

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

Data not available

Coordinator

Philips Gloeilampen Fabrieken NV
EU contribution
No data
Address
80020
5600 JM EINDHOVEN
Netherlands

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0