Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-04-16

CHEMICAL VAPOUR INFILTRATION IN NEW DESIGNED COMPOSITES WITH REDUCED INFILTRATION TIMES BY PRESSURE GRADIENTS AND MONITORED BY INSITU ANALYSIS WITH SPECTROSCOPIC MEANS

Objective


Carbon fibre reinforced silicon carbide ceramics with newly designed fibre architectures have been engineered, manufactured and tested. The infiltration process itself and the mechanical properties of the fibre reinforced composite materials were modelled. Both models were validated by the results of laboratory infiltration experiments and by mechanical tests, respectively. Because of the reduction in infiltration time, pressure gradient or forced flow chemical vapour infiltration (FCVI) has been shown to have a high economic potential. Analysing this process by in situ Fourier transform infrared spectrometry (FTIR), many chemical species in the hot zone could be identified and indicated process interferences at an early stage of the silicon carbide deposition process. The carbon fibre reinforced silicon carbide composites were designed and prepared with respect to their foreseen applications: damage tolerant composite materials and fibre reinforced bandage material for seal rings. They were tested under near service life conditions.
Chemical vapour infiltration (CVI) is a superior technique for densifying newly designed 2d and 3d carbon fibre preforms in order to get a composite with properties such as shear strength and damage tolerance which are unattainable with conventional 2d laminates.

The main disadvantages of CVI (long process times and process instabilities) have to be overcome, especially if complex shaped components of these preforms have to be infiltrated. This will be in this programme by applying pressure gradients to direct the gas flow and to install automatic pressure gradient control. Furthermore, process instabilities e.g. gas phase nucleation will be detected by in-situ IR-spectroscopic analysis in a very early process stage. These CVI process improvements will be an important prerequisite for the production of the newly designed 2d and 3d carbon fibre composites. Their mechanical and physical properties will be gained by testing and by finite element calculations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Data not available

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

Data not available

Coordinator

Messerschmitt-Bölkow-Blohm GmbH (MBB)
EU contribution
No data
Address

8000 MÜNCHEN
Germany

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

My booklet 0 0