Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-10

The integration of computer modelling, mould design & the liga process for micro-injection moulding of plastic parts

Objective



Industrial interest in micro fabrication techniques has mushroomed in the wake of recent advances in microtechnology, notably the LIGA technique, which provides a cheap and effective route to the mass fabrication of complex microstructures. At the heart of LIGA technology is the injection moulding process. It is generally accepted that computer aided modelling has superseded the trial and error methods that once characterised the design stage of injection moulding. Computer modelling is now relied upon to help design the mould, runners and gates, and to define and optimise a host of process parameters. However, current state of the art software has many drawbacks when applied to microinjection moulding, since the current 2D approach is fatally flawed when modelling structures, which have large surface to volume ratios. In addition, the small space and time scales governing the filling of micro structures strongly modify the physics of the flow.

There is therefore a strong need for new and reliable models, together with improved physical knowledge of the process. The objectives of this project are: Development of a 3D mathematical and numerical model for the simulation of the filling stage of micro injection moulding; Acquisition of experimental evidence concerning the physical phenomena governing the process; Design of improved tools specifically targeted at micro injection moulding; Selection and analysis of engineering polymers for micro injection moulding; Assessment of the new integrated process using a complex industrial demonstrator micro part; Development of a completely new methodology to predict the quality of the parts. The consortium comprises a micromechanics institute (IMM), a university applied mechanics unit (UCL), an electronics components manufacturer (Oxley) and an engineering polymer producer (Phillips).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

OXLEY DEVELOPMENTS COMPANY LTD
EU contribution
No data
Address
St. Thomas Street 35
SE1 9SN London
United Kingdom

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0