Objective
Power electronics are embedded in major sectors of industry, and find a wide application in metallurgy, power grids, refineries and electric propulsion in general. An important raise in transportation domain is foreseen, thanks to the rising demand cost effective, environmentally friendly and efficient transportation networks. Reducing volume and cost, and at the same time improving the efficiency are constant requirements in Power Electronics. "Integrated Power Modules" (IPMs) can meet these requirements. However, the currently available technologies impose significant limitations on the achievable power range (1200V-100A) and efficiency. Nowadays IPMs are mainly sourced from Japan. They are based on classical DCB ceramic technology. A breakthrough in technology is required to respond to the market demand for more efficient IPMs that operate at increased power levels. The objective of this project is to realise that breakthrough in IPM characteristics. The skills of semiconductor makers, system builders, technology suppliers and final users are united within the consortium. The breakthrough this project can establish will be demonstrated via a high power inverter (4kV - 3MVA), that operates at 25x the currently achievable power level.
Innovative aspects of this project are: - IGBT transistor device improvements, through new connection techniques (reliability increase >2 times) and higher blocking voltage (increase from 1,7 to 4,5 kV); - The implementation of new substrate materials with superior thermal characteristics (AIN > 170W/m/K, CVD diamond >1000 W/m/K, as opposed to alumina > 25 W/m/K), and enhanced dielectric strength. These technologies will increase the power to volume ratio by a factor of five, and reduce the weight of the system by at least 20%. Thus a 40% cost reduction of IPMs can be achieved; - IPM design standardisation, and high voltage operation (4 kV operating voltage) by serial connection of IGBT semiconductors. These aspects will be addressed in three separate tasks. A fourth task involves the construction of the high power inverter demonstrator, and the fifth tasks is the project management. After completion of the project about three years will be required to commercialise the developed technologies. The high power IPMs will be a powerful response to the Japanese domination of the market. The environmental impacts can be enormous: high-speed trains using the new IPM technology will consume 3% less electrical power. Fast, efficient and comfortable high-speed train networks can put the explosive growth of highly polluting air and road transportation to a halt. The return on investment of this project can be as high as 1 to 40, creating employment for 2,000 people through the EC. The partnership, involving 8 partners from 5 different countries, is composed of 4 technology developers, 2 research laboratories and 2 final users. The wide spectrum of skills and technologies involved cannot be addressed at national level, hence a pan-European effort is absolutely required. BE97-5077
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power transmission
- social sciences economics and business business and management employment
- engineering and technology materials engineering metallurgy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
75116 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.