The large concentration of Cl, K and S in straw contributes to biomass boiler operational problems such as increased levels of boiler ash deposit formation, deposit induced super-heater corrosion and emission of SO2, HCl and aerosols from the stack on. The processes in a grate fired boiler chamber can be divided in two areas, the primary grate combustion zone and the freeboard. K, Cl and S can remain in the grate combustion zone and be contained in the bottom ash or be transported to the freeboard of the boiler by particle entrainment and evaporation of volatile species. The objective of the HIAL Workpacked-2, Task 2.2 is to investigate the release of Cl, K and S from straw to the gas phase at conditions that resemble the local combustion conditions on a grate of biomass-fired boilers. The experimental release investigation revealed that both the combustion temperature and the ash composition had severe impact on the extent of Cl, K and S release to the gas phase at grate combustion conditions. Based on the investigated HIAL bio-fuels the following conclusions may be drawn:
Potassium:
The potassium release increased with applied combustion temperature for all samples regardless of ash composition. Up to 900°C between 20 and 60% of the total potassium had been released to the gas phase. At temperatures above 900°C, the relative potassium release increased almost linearly with temperature until 60 to 90% had been released at 1150°C. The local temperature on the grate in grate-fired boilers is fluctuating, but frequently above 900-1000°C. This illustrates that significant amounts of the fuel potassium are released to the gas phase during grate firing. The ash composition in form of the content of chlorine and silicon relative to potassium proved to have the highest influence on the potassium release behaviour. Evidence was found in the SEM-EDX analysis that potassium was partly incorporated into silicate structures at 650°C and nearly complete incorporated at 900°C. In a silicate lean biomasses the SEM-EDX investigation indicated that phosphor were able to retain potassium in the form of K3PO4. However, as calcium also forms phosphates and none of the investigated bio-fuels contained significant amounts of phosphor relative to potassium and calcium, the effect is probably minor in the overall release picture. In general, it is expected that the potassium release in grate-fired boilers would obey the following qualitative trends with respect to ash composition:
K/Si < 2 and low chlorine content Þ low K release
K/Si < 2 and high chlorine content Þ high K release
K/Si >> 2, at all chlorine levels Þ high K release
Chlorine:
For the samples with substantial chlorine content the release occurred in two steps. Between 30 and 60% was released in the first step below 500°C. The remaining chlorine was released in the second step between 650 and 800°C. On the contrary, for the samples with relatively low chlorine content, more than 80% was released in a single step below 650°C. Nevertheless, at combustion above 800°C chlorine was exclusively released to the gas phase. The composition of the ash or the absolute chlorine content did not affect this fact. The combustion temperature in the fuel-layer in grate fired boilers is typically significantly above 800°C, which implies that most fuel chlorine would be released to the gas phase during combustion in CHP plants.
Sulphur
In contrast to the chlorine and potassium release, the sulphur release appeared more sensitive to ash composition than combustion temperature. In case the bio-fuel contained relative high amounts of calcium relative to silicate, the sulphur release was lowest and unaffected by combustion temperature. On the contrary, if silicate was present in excess the sulphur release increased heavily with combustion temperature. In general, other ash forming elements such as Cl, K and P are indirectly coupled to the sulphur release. For instances a higher chlorine content results in higher potassium release, which will leave more silicate to react with calcium and more sulphur is released. None of the biomasses show a sulphur release of less than 40% of the total fuel sulphur at any combustion temperature. This is probably related to the occurrence of substantial amounts of volatile organic sulphur in the biofuels. Again, the sulphur release in grate fired boilers is expected to be controlled by the following qualitative trends with respect to ash composition:
Ca/Si > 1 and Ca/S >> 1 Þ low S release
Ca/Si << 1 and Ca/S >> 1 Þ high S release
K/Si > 2 and low chlorine content Þ low S release (at moderate temperatures)
This study has provided information on the influence of temperature and fuel composition on gas phase release of K, Cl and S during combustion of high alkali biomasses. The information is an important step towards an understanding the SO2 emission and ash generation process in straw fired grate boilers.