Skip to main content

Development of algorithms for the use of ocean colour data in coastal waters to detect optically active material and assess biological processes.

Objective



The global aim of the present study is to develop the necessary tools for exploiting the new potential of the ocean colour technique brought by the launching of improved sensors, over European coasts. The specific objectives are:
Objective 1: To produce a large data set of the inherent optical properties of the main classes of optically active substances in European coastal waters. This objective should lead to the advancement of knowledge in two ways. Firstly, very significant improvements have recently been obtained in marine optics instrumentation and in methods for deconvoluting the individual contributions of optically active substance to bulk inherent and apparent optical properties of seawater. These recent improvements have not been yet fully exploited in the frame of algorithm development for ocean colour remote sensing, applied to coastal waters. Secondly, the present study proposes the first concerted effort for acquiring a complete set of marine optics data over European coasts which, moreover, would account for the most recent technical advancements in marine optics. To this day, all marine optics data set i) are either incomplete in regards to the number of measured variables, ii) cover limited areas or iii) do not take advantage of the most recent instrumentation now available. The present study aims to fill all these gaps. Objective 2: To determine quantitatively the effect of red tides on ocean colour. In addition to a new channel around 410-420 nm, the forthcoming ocean colour sensors will include another new one around 490 nm. The availability of such a channel should open the way to new applications, especially in coastal waters. For instance, it may allow the remote detection of red tides. Objective 3: To produce optimised algorithms using the new acquired optical data set, which will allow to produce maps of the main optically active seawater components (including red tides) using the future ocean colour sensors (new spectral bands). In addition to providing new algorithms, the true possibilities and limitations of ocean colour remote sensing in coastal waters will be assessed. The effect of sea bottom, sun glint, white caps, ..., on the radiance signal will be determined.
Objective 4: To provide operational ocean colour algorithms for specific ocean colour sensors. This objective will be fulfilled by using a numerical "end-to-end" simulator that integrates the whole processing chain of a given sensor (navigation related corrections, radiometric corrections, classification of land, cloud and ocean pixels, atmospheric corrections, determination of seawater component concentrations based on algorithms developed in previous operations). The simulator will also allow to test different approaches used for algorithms.
Objective 5: To implement ocean colour analysis into a video server frame, allowing a wide field of users to exploit this information for economically and socially important applications. As suggested by the applications of ocean colour described above, the main users of ending products are often non-experts of remote sensing data processing. These users are rather found in environmental and engineering sciences, or even in the civil sector. Considering the recent progresses, developments and implementations in the field of electronic links (e.g. Internet) and computer video servers (e.g. WWW), ocean colour products should become easily accessible to users at any time and locations.

Funding Scheme

CSC - Cost-sharing contracts

Coordinator

ACRI SA - MECANIQUE APPLIQUEE ET SCIENCES DE L'ENVIRONNEMENT
Address
260,Route Du Pin Montard 260
06904 Sophia Antipolis
France

Participants (8)

European Communities - Commission of the European Communities Joint Research Centre
Italy
Address
Via E. Fermi 1
21020 Ispra
FREIE UNIVERSITAET BERLIN
Germany
Address
Fabeckstrasse 69
14195 Berlin
GKSS - FORSCHUNGSZENTRUM GEESTHACHT GMBH
Germany
Address
Max-planck-strasse
21502 Geesthacht
NERC Centre of Coastal and Marine Sciences
United Kingdom
Address
Prospect Place West Hoe
PL1 3DH Plymouth
NETHERLANDS INSTITUTE FOR SEA RESEARCH
Netherlands
Address
Landsdiep 4
1790 AB Den Burg
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Norway
Address
46,Bynesveien 46
7018 Trondheim
UNIVERSITE PIERRE ET MARIE CURIE - PARIS VI
France
Address
Place Jussieu, 4
75252 Paris
UNIVERSITY OF OLDENBURG
Germany
Address
Carl Von Ossietzky Stra¯e 9-11
26111 Oldenburg