Objective
The radiation effect due to changes of microphysical properties within cirrus clouds can be very important. We will provide a long-term survey of these properties, together with cirrus macrophysical properties, and then establish a compilation of correlations between them and the state of the atmosphere. This information is essential for the understanding of changes in clouds expected by a global climate change. Satellite instruments measuring radiation with a good spectral resolution as well as multi-angular measurements of polarized reflectance used with newly developed retrieval algorithms are now capable to give this information over the whole globe. Extensive care will be taken of the validation of the retrieved cirrus properties by intercomparison with data sets from regional measurement campaigns. Models for climate prediction can profit from the outcome of this proposal by using the most appropriate correlations in their radiation codes.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Call for proposal
Data not availableFunding Scheme
CSC - Cost-sharing contractsCoordinator
91128 PALAISEAU
France