Objective
Problems to be solved
Aerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere. A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. Such a dataset could be used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. No suitable data set for this purpose presently exists.
Scientific objectives and approach
EARLINET will establish a quantitative comprehensive statistical database of the horizontal, vertical, and temporal distribution of aerosols on a continental scale. The goal is to provide aerosol data with unbiased sampling, for important selected processes, and air-mass history, together with comprehensive analyses of these data. The objectives will be reached by implementing a network of 21 stations distributed over most of Europe, using advanced quantitative laser remote sensing to directly measure the vertical distribution of aerosols, supported by a suite of more conventional observations. Special care will be taken to assure data quality, including intercomparisons at instrument and evaluation levels. A major part of the measurements will be performed according to a fixed schedule to provide an unbiased statistically significant data set. Additional measurements will be performed to specifically address important processes that are localised either in space or time. Back-trajectories derived from operational weather prediction models will be used to characterise the history of the observed air parcels, accounting explicitly for the vertical distribution.
Expected impacts
EARLINET will make a major contribution to the quantification of anthropogenic and biogenic emissions and concentrations of aerosol, quantification of their budgets, radiative properties and prediction of future trends. It will also further the understanding of physical and chemical processes related to these species, their long-range transport and deposition, and the interaction of aerosols with clouds. The project will also make an important contribution to the improved model treatment of physical and biospheric processes, in particular clouds and aerosols. The data to be collected will be used to improve the quality of a number of satellite retrieval systems that are affected by the presence of aerosols, and will provide the necessary basis for future satellite missions that employ laser remote sensing. EARLINET will provide information about transboundary transport of aerosols that can also be used as a tracer for other substances in the planning of pollution abatements strategies. Co-operation within the network will lead to a very efficient transfer of know-how in two important areas: advanced remote sensing using high-tech instruments, and the application of these techniques to address complex environmental problems. It will be a very effective training area for young scientists, both from well-developed and less-developed countries, providing equal opportunities to use the common data.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology
- natural sciences computer and information sciences databases
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences earth and related environmental sciences atmospheric sciences climatology
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
20146 HAMBURG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.