Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-11

Computational aspects of the diophantine problems

Objective



In my thesis, I have studied several diophantine problems and conjectur of Number Theory. In particular, the computational aspect of the abc and the Szpiro conjectures and their applications were extensively explored. I presented several algorithms to test these conjectures leading to the best examples currently known.
In future, I propose to continue to study some conjectures and diophantine problems in Number Theory. I wish to go deeper into four of them:
1. The abc conjecture for number fields. I wish to make explicit several parameters for it.
2. Links between minimal discriminant and conductor of hyperelliptic curves. The Szpiro's conjecture was extended to hyperelliptic curves by P. Lockhart. It remains to specify some parameters in this conjecture and to study its consequences.
3. Finding algebraic curves with several rational points.
4. Studying diophantine problems in number fields.
This work can be done using the computer algebra system SIMATH, develop by the research group of Prof. H.G. Zimmer at the university of Saarbruecken.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RGI - Research grants (individual fellowships)

Coordinator

Universität des Saarlandes
EU contribution
No data
Address
15,Im Stadtwald 15
66041 Saarbrücken
Germany

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0