Skip to main content
European Commission logo print header

Algebraic k-theory and topological cyclic homology of rings

Objective



This project is centered around computations of two important invariants for algebraic and homotopy rings,namely,the algebraic K-theory and the topological cyclic homology groups associated to these rings. A general scheme for computations of topological cyclic homology groups was established in our thesis, and it is based on a descent theorem for the action of cyclic groups on the topological Hochschild homology spaces of certain rings. Using this scheme,computations of topological cyclic homology (and algebraic K-theory) groups were carried out for the rings of p-adic integers. One of the objectives of this project is to extend these computations to other rings, e.g. truncated polynomial rings over the rings of p-adic integers. A second objective is to study the descent problem in general for actions of profinite groups on spaces, and especially the particular case of the action of the Galois group of a fied extension KCL on the K-theory space of the field L.

Call for proposal

Data not available

Coordinator

UNIVERSITY OF OSLO
EU contribution
No data
Address

0316 OSLO
Norway

See on map

Total cost
No data

Participants (1)