Objective
Research objectives and content
The main purpose of this project is to investigate analytically and numerically the chaotic properties of multi-dimensional dynamical systems. In particular, we will study near-integrable discretizations of certain partial differential equations (pdes) of physical significance like the Nonlinear Schrodinger equation describing pulse transmission in optical fibers and the sine-Gordon equation monitoring the flux of supercontacting current in Josephson junctions.
Besides the relevance of our study to the continuum limit of the corresponding pdes, we will also analyze our systems as
multi-degree-of-freedom Hamiltonian lattice models. Thus we expect to obtain results concerning the existence and stability of localized oscillatory excitations called breathers, as well as investigate energy transport between interacting breathers.
Our basic analytical tools will be the application of invariant manifold theory, Mel'nikov analysis and 'horseshoe' dynamics to establish the occurrence of homoclinic chaos. We also intend to apply various other methods, like the implicit function theorem in the so-called anti-continuum limit which have recently proved very useful in the investigation of such breather solutions. Guided by our analytical results we also plan to carry out extensive numerical computations to study the stability of our localized oscillatory states and global behavior of these systems for very long times.
Training content (objective, benefit and expected impact)
My stay at Cambridge is expected to be of great benefit as it well enable me to work with outstanding researchers in the field of Hamiltonian Dynamics. Furthermore, my background in higher-dimensional Mel'nikov analysis, invariant manifold theory and pdes should be beneficial for the success of the proposed collaboration. It is expected that important results will be obtained towards a better understanding of the several open problems concerning chaos in multi-dimensional systems. Links with industry / industrial relevance (22)
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymaterials engineeringfibers
- natural sciencesmathematicsapplied mathematicsdynamical systems
- natural sciencesmathematicspure mathematicsmathematical analysisdifferential equationspartial differential equations
- natural sciencesphysical sciencesopticsfibre optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
Data not availableFunding Scheme
RGI - Research grants (individual fellowships)Coordinator
CV4 7AL COVENTRY
United Kingdom