Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-07

Naturally processed peptides derived from the human acetylcholine receptor. Clues for myasthenia gravis immunotherapy.

Objective



Research objectives and content

- a doubling of the global atmospheric Cø2 concentration and associated, more local changes in climate predicted from General Circulation Models to occur across Europe over the next 100 years will not be detrimental to European forests. Subsidiary hypotheses to be tested are that: - impacts of elevated CO2 and temperature will be limited by availability of nitrogen in northern temperate and boreal forests and by availability of water in Mediterranean forests, and - a delicate balance between gains of carbon by CO2 assimilation and losses by tree respiration and microbial oxidation of soil organic matter determine carbon sequestration in stands and may be tipped one way or the other by rising CO2 and temperature. The primary focus is on stands of the ecologically and environmentally most important trees and forests across Europe. The methodology is to model the CO2 and water exchanges, carbon sequestration and water use, growth and production of forest stands using mechanistic, bottom-up models that contain explicit representation of the processes that are affected by rising CO2 and temperature. The work is focused on the rationalisation, convergence, parameterisation and validation of the suite of models in current use and their application to predicting the likely impacts at stand scale. Upscaling to landscapes and longer time periods will take account of recent knowledge regarding feedbacks but is more speculative. Parameterisation will utilise previous experimental work and will be reinforced by new integrated experimental programmes of ecophysiological measurements in chambers and forest canopies. Validation will be achieved by comparison of predicted fluxes with measured fluxes in today's climate and by comparison of predicted impacts against measured impacts in mini-ecosystems with elevated CO2 created for this purpose. The main products will be: greatly enhanced understanding of the impacts of rising CO2 and temperature at stand scale, a database of parameters, improved and, most importantly, validated models, new hypotheses relating to feedbacks between soil, vegetation and atmosphere at landscape scale over long time periods, and. a set of predictions of likely impacts at stand scale. There will be cooperation with complementary projects with cross-Partnership, in particular FORCE, EUROFLUX and LTEEF-II.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

Data not available

Coordinator

Eberhard-Karls-Universität Tübingen
EU contribution
No data
Address
7,Wilhelmstrasse
72074 Tübingen
Germany

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0