Skip to main content

Advanced course on algebraic quantum groups

Objective

The subject of Quantum Groups is a rapidly diversifying field of mathematics and mathematical physics, originally launched by developments in theoretical physics and statistical mechanics involving quantum analogues of Lie algebras and coordinate rings of algebraic groups. The study of these objects and their representation theory has opened up important new directions in non-commutative algebra. The aim of the course is to provide young researchers with the necessary tools to teckle open problems in the subject area, giving them the opportunity to learn the most recent results on the structure and representation theory of quantised coordinate rings and quantised enveloping algebras.

The label "quantised coordinate ring" is used in the literature to refer to various non-communitative algebras which are, informally expressed, deformations of the classical coordinate rings of algebraic varieties or algebreic groups; the adjective "quantised" usually indicates that some solution to the quantum Yang-Baxter equation is involved in the construction and/or the representation theory of the algebra. The known algebras which, by general agreement, carry the label "quantised coordinate rings" do share a substantial number of common features, which will be developed in the lectures. Similarly, "quantum enveloping algebras of semi-simple Lie algebras (or of affine Kac-Moody algebras). This class of algebras is somewhat more tightly defined, in that generators and relations are given by a standard process applied to the Serre relations for classical enveloping algebras. As in the classical setting, there is a duality between these algebras and the quantised coordinate rings of the corresponding semi-simple algebraic groups.
ftp://ftp.cordis.lu/pub/improving/docs/HPCF-1999-00048-1.pdf

Funding Scheme

ACM - Preparatory, accompanying and support measures

Coordinator

Type of Event: Euro Summer School
Address
This Event Takes Place In Bellaterra

Spain