Objective
The subject of Quantum Groups is a rapidly diversifying field of mathematics and mathematical physics, originally launched by developments in theoretical physics and statistical mechanics involving quantum analogues of Lie algebras and coordinate rings of algebraic groups. The study of these objects and their representation theory has opened up important new directions in non-commutative algebra. The aim of the course is to provide young researchers with the necessary tools to teckle open problems in the subject area, giving them the opportunity to learn the most recent results on the structure and representation theory of quantised coordinate rings and quantised enveloping algebras.
The label "quantised coordinate ring" is used in the literature to refer to various non-communitative algebras which are, informally expressed, deformations of the classical coordinate rings of algebraic varieties or algebreic groups; the adjective "quantised" usually indicates that some solution to the quantum Yang-Baxter equation is involved in the construction and/or the representation theory of the algebra. The known algebras which, by general agreement, carry the label "quantised coordinate rings" do share a substantial number of common features, which will be developed in the lectures. Similarly, "quantum enveloping algebras of semi-simple Lie algebras (or of affine Kac-Moody algebras). This class of algebras is somewhat more tightly defined, in that generators and relations are given by a standard process applied to the Serre relations for classical enveloping algebras. As in the classical setting, there is a duality between these algebras and the quantised coordinate rings of the corresponding semi-simple algebraic groups.
ftp://ftp.cordis.lu/pub/improving/docs/HPCF-1999-00048-1.pdf
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesmathematicsapplied mathematicsmathematical physics
- natural sciencesmathematicspure mathematicsalgebra
- natural sciencesphysical sciencesclassical mechanicsstatistical mechanics
- natural sciencesphysical sciencestheoretical physics
You need to log in or register to use this function
Call for proposal
Data not availableFunding Scheme
ACM - Preparatory, accompanying and support measuresCoordinator
Spain