Objective
The theory of modular forms is a subject where the most diverse branches of mathematics come together: complex analysis, algebraic geometry, representation theory, number theory. The last decades have witnessed the emergence of deep connections between modular forms and the p-adic Hodge theory. These relations have been used in many of the recent most remarkable developments in Mathematics such a the proof of Fermat's last theorems. This advanced course will survey this circle of ideas, with a special emphasis on the recent comparison theorems of T. Tsuji and the generalizations, and so in the study of topics such as Serre's conjecture and the recent proof of the full modularity conjecture. The aim of the course is to provide young researchers with the necessary tools to tackle open problems in the subject are, giving them the opportunity to learn the most recent results on p-adic Hodge Theory and also their interpay with modular forms.
ftp://ftp.cordis.lu/pub/improving/docs/HPCF-2000-00028-1.pdf(opens in new window)
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics arithmetics
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics mathematical analysis complex analysis
- natural sciences mathematics pure mathematics algebra algebraic geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.