Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-05-21

Spatio-temporal interpolation of daily precipitation for agro-meteorological modelling using artificial neural networks

Objective

The aim of the proposed research is to analyze and evaluate several Artificial Neural Networks approaches to the interpolation of daily precipitation over space and time. The work will attend to the following objectives:
- Consideration of appropriate date, weather classification and terrain variables and neighboring observations in both time and space as predictors of rainfall
- The design of an appropriate back propagation network structure for interpolating daily precipitation that accounts for trend and covariance within the data
- Independent testing of results using withheld data, particularly in relation to the constant drizzle problem affecting traditional local interpolation methods
- Comparison of results with those of advanced mathematical interpolators
- Investigation of a combined network for the estimation of daily temperatures in conjunction with precipitation. The research will focus on the development of network models to estimate precipitation as a function of both trend and covariance. A formal comparison of ANN versus advanced mathematical interpolation techniques will be done for daily precipitation. Rigorous testing of the method against state-of-the-art traditional interpolation methodologies, using independent data and uncertainty metrics, is intended to provide quality assurance.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Topic(s)

Data not available

Call for proposal

Data not available

Coordinator

UNIVERSITY OF EDINBURGH
EU contribution
No data
Address
Drummond Street
EH8 9XP EDINBURGH
United Kingdom

See on map

Total cost
No data