Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-21

In vitro assays for studying cell morphogenesis in schizosaccharomyces pombe

Objective

Fission yeast cells are cylindrical and grow from exactly opposite "antipodal" ends. This is achieved through delivery by cytoplasmic microtubules (MTs) of proteins that decorate cell tips, which include the proteins Tea1p, Tea2p (a MT-associated motor), and Tip1p (a MT-associated protein (MAP)). These proteins and MTs collaborate in maintenance of cell-end identity. Nevertheless, the proteins rely on each other and on MTs for their cell-end localization in vivo, and seem to affect MTs in cells. This has rendered difficult to understand in vivo how initiation of cell -end identification occurs. My aim is to develop in vitro assays to examine yeast MT assembly in order to characterize the specific interaction of each of those proteins with MTs outside the cellular context. I will use recombinantly expressed yeast proteins and assay quantitatively their effect on microtubule assembly in pure tubulin and in yeast lysates competent for MT assembly , which I will develop. Expected results of the project include:
a) Determination of the affinity of Tea1p, Tea2p and Tip1p for MTs;
b ) Determination of their specific effect on MTs (stabilization, transport);
c) Determination of their effect(s) on MT stability in yeast cytoplasmic lysates; d) Identification, among those proteins, of the initiator(s) of cell-end identification in viva. Our development of yeast in vitra assays will introduce a very powerful tool to study quantitatively morphogenesis in this organism. Training content: The project will involve training in biochemistry and genetics of fission yeast, and development of in vitro assays for quantitative analysis of yeast MT assembly by microscopy . Expected impact for applicant: I will learn a new system, the fission yeast, and acquire knowledge in biochemistry and genetics. This will nicely complement my previous training in physics and biology. My long term aim is to understand cellular events quantitatively as the outcome of the collective properties of their components. The development of quantitative assays to study yeast morphogenesis in vitro will help me reach that aim. Expected impact for host: A need for cell-free assays to study yeast MT assembly and regulation outside of the cellular context is manifesting in the field. Therefore, the prospective research will be innovative and very important to the field. In particular, my host laboratory will greatly benefit from the development of such assays.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Data not available

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RGI - Research grants (individual fellowships)

Coordinator

CANCER RESEARCH UK
EU contribution
No data
Address
Lincoln's Inn Fields 44
WC2A 3PX LONDON
United Kingdom

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0