Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Phase Change Random Access Memory

Objective

The objective of the PC-RAM project is to validate the potentiality of a non volatile memory concept based on the phase transition of chalcogenide materials for nanoelectronics applications, by testing the specifications of stand alone structures. After first failure mainly due to material characteristics, two factors have led to a revival of interest for this type of technology: a new phase change material composed of germanium, antimony and tellurium, successfully developed for optical discs applications, and the improved resolution of lithographic tools, enabling confinement of the switching area. Still, few experimental results on their performances are available today. Their ability of multi-level recording their scaling ability, the probable improvement of tsis specifications when scaling down, in contrary to most other memory concept, their remarkable resistance to ionised cosmic radiation and the foreseen wide range applications makes this type of memories very attractive. The objective of the PC-RAM project is to validate the potentiality of a non volatile memory concept based on the phase transition of chalcogenide materials for nanoelectronics applications, by testing the specifications of stand alone structures. After first failure mainly due to material characteristics, two factors have led to a revival of interest for this type of technology: a new phase change material composed of germanium, antimony and tellurium, successfully developed for optical discs applications, and the improved resolution of lithographic tools, enabling confinement of the switching area. Still, few experimental results on their performances are available today. Their ability of multi-level recording their scaling ability, the probable improvement of tsis specifications when scaling down, in contrary to most other memory concept, their remarkable resistance to ionised cosmic radiation and the foreseen wide range applications makes this type of memories very attractive.

DESCRIPTION OF WORK
The objective of the PC-RAM project is to validate the potentiality of a non volatile memory concept based on the phase transition of chalcogenide materials for nanoelectronics applications.

To develop a reliable, competitive PC-RAM technology, many points have to be treated:
- to validate experimentally the analysis of scaling ability far down to the 10 nm range;
- to validate experimentally the switching cycling ability. This will lead to the optimisation of PC-RAM component design as well as phase change and contact material choice with regard to reliability;
- to develop nanotechnological manufacturing processes for the PC-materials to reach critical feature sizes far below 100 nm and concurrently, critical dimension down to the 30 nm regime;
- to develop systematically adequate metal for PC-material contacts, in view of the necessary high reliability of PC-RAM (life-time in switching cycles).

Willing to give particular attention to the scaling ability, the consortium will test the specifications of radial structures: contact pads (simply constituting electrical contacts on PC material for electrical test), basic device (a switching element of PC material between two electrodes), and memory cell (basic device driving transistor). The first two stages concern stand alone structures and are the core of the experiments actually lead in the scope of the project: active part of memory. The last stage is the very goal of a reflection of project within the project: system integration. Apart from Work Package 0 (WP) which is dedicated to management tasks, the workprogramme contains: WP1 devoted to the preliminary work, WP2 devoted to the optimisation of the test structures, WP3 dedicated to the study of the scaling ability, WP4 devoted to the evaluation of the system integration of this type of devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

COMMISSARIAT A L'ENERGIE ATOMIQUE
EU contribution
No data
Address
31-33 RUE DE LA FEDERATION
75752 PARIS CEDEX 15
France

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0