Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-18

NEXT Low Power Magnetic Random Access Memory with Optimised Writing Time and Level of Integration.

Objective

Important discoveries have enlightened a strong competitor to existing RAM which is Magnetic RAM (MRAM). Instead of using electric charges as data storage (like it is done in all kinds of RAM, even NVRAM), MRAM are using cells which magnetic state can be reversed, like in Hard Disk drives, so as to store '0' and '1' with the difference that memory is Randomly Accessed, increasing drastically data transfer rates. Based on a recent advance in the magnetism field and in order to overcome the current difficulties, the consortium will investigate two different, new, promising writing processes: the Current Induced Magnetic Switching (CIMS) and the Thermally Assisted Switching (TAS).The objective of the project is therefore to perform scientific investigation allowing either one or the other technique to result in a fully operational 1Mbit prototype which performances would be: R/W cycle < 30ns and Power consumption < 5mW for one write cycle of 256 bits.

DESCRIPTION OF WORK
In the project timeframe, the work will be divided in three actions:1. Development of materials and structures for TAS and CIMS operation with the aim of reducing the writing energy. The current density to be flowed during the writing step should be compatible with the use of magnetic tunnel junctions (MTJs). In parallel, all technological issues for the integration of the magnetic structures will be worked out: etching techniques (reactive ion etching or ion beam etching) for magnetic stack, integration of damascene interconnections with low surface roughness, cross compatibility between CMOS and magnetic tunnel junctions in terms of process conditions and temperature history.2. Demonstration of single operating cells using TAS or CIMS mode for electrical performance evaluation (R/W access time, R/W consumption, cycling). GO/ NO GO decision at month 18 according to the performance results and the integration compatibility. The selected mode will be then re-implemented for process stabilisation using the optimized technological recipes of action 1.3. Development of the memory architecture for the selected mode of operation and chip design comprising the different steps of functional design, electrical design, physical design and flow integration. Finally, the MTJ will be integrated and fully tested into a 1Mbit MRAM demonstration chip featuring targeted performances: - R/W cycle < 30ns - Optimum retention better than 10E15 R/W cycles - Power consumption < 5mW for one write cycle of 256 bits - Vwrite= 0.6V - DVread=100mV - ESD protection level to prevent MTJ from Breakdown Voltage >0.8V.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

COMMISSARIAT A L'ENERGIE ATOMIQUE
EU contribution
No data
Address
31-33 RUE DE LA FEDERATION
75752 PARIS CEDEX 15
France

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0