Objective Objectives To make further strides in emissions control of engines, more detailed understanding of the key phenomena is required. This project aims to generate improved diagnostics for probing such phenomena, building upon the findings of a previous EU collaboration, but with a strong emphasis on industrial applicability of the findings. This project has as its theme the development of optical diagnostics for probing the key phenomena responsible for emissions from automotive engines. It focuses on the development of techniques to investigate dense diesel sprays, the composition and spatial distribution of gasoline vapour, temperature maps of burnt and unburned gases, NOx concentration maps and diesel soot volume fraction and size. Technical Approach Diesel sprays play a crucial role in determining particulate and NOx emissions, amongst other things. Three promising techniques namely, Laser Induced Fluorescence (LIF), Raman and a combination of LIF with Mie scattering, will be evaluated in spray bombs and a DI diesel engine. In gasoline engines the homogeneity of the charge can be crucial to the emissions performance. Two techniques will be further developed to investigate this, particularly in order to study fuel effects. One of the techniques is based upon Near Infra-Red Absorption, the other on LIF. Whilst techniques such as CARS have been established for obtaining point measurements of temperatures, complementary work will be undertaken to provide quantitative maps of NO distribution in burnt gas, again based upon LIF techniques. Soot and particulate material remain key issues for the diesel engine. An approach based on Laser Induced Incandescence (LII) combined with Mie scattering will be further developed and its utility to the diesel engine environment assessed. Expected Achievements and Exploitation The project will deliver tested and documented techniques and methodologies for measurements of sprays, vapour, burnt and unburned gas temperature, NO concentrations and soot in internal combustion engines. In so doing it is expected that there will be an additional output in the form of increased understanding of the engine processes being targeted. Exploitation of the results by the industrial partners will be by adoption of the techniques in their own in-house R&D programmes aimed at gaining greater understanding of the impact of engine and fuel design parameters on emissions. Exploitation by the academic partners will be via the enhanced fundamental knowledge and will not be restricted to the automotive field of the present industrial partners. Fields of science engineering and technologyenvironmental engineeringenergy and fuelsliquid fuelsnatural sciencesphysical sciencesopticslaser physics Programme(s) FP4-NNE-JOULE C - Specific programme for research and technological development, including demonstration in the field of non-nuclear energy, 1994-1998 Topic(s) 0402 - Generic combustion Call for proposal Data not available Funding Scheme CSC - Cost-sharing contracts Coordinator Shell Research Ltd Address Thornton research centre CH1 3SH Chester United Kingdom See on map EU contribution € 0,00 Participants (7) Sort alphabetically Sort by EU Contribution Expand all Collapse all CRANFIELD UNIVERSITY United Kingdom EU contribution € 0,00 Address Wharley end, cranfield MK43 0AL Cranfield - bedfordshire See on map Deutsches Zentrum für Luft- und Raumfahrt e.V. Germany EU contribution € 0,00 Address Pfaffenwaldring 38-40 70503 Stuttgart See on map GIE PSA Peugeot Citroën France EU contribution € 0,00 Address Chemin de la malmaison 78140 Velizy-villacoublay See on map LUND UNIVERSITY Sweden EU contribution € 0,00 Address Professorsgatan 1 221 00 Lund See on map Ruprecht-Karls-Universität Heidelberg Germany EU contribution € 0,00 Address Im neuenheimer feld 253 69120 Heidelberg See on map Université de Rouen - Haute Normandie France EU contribution € 0,00 Address Place emile blondel 76821 Mont-saint-aignan See on map VOLVO TECHNOLOGY (CORPORATION) Sweden EU contribution € 0,00 Address 9,dept.6000, pvh31 405 08 Goeteborg See on map