Objective
The objective of LES Engines is to develop a novel combusting flow computer simulation technique to support the development of fuel-efficient and clean automobile engines. This will contribute to improvement of the environment and competitiveness of the European Union. Such improved Computational Fluid Dynamics (CFD) techniques are required to master the complex challenges imposed by the new generation of engines characterized by a very strong charge stratification created mostly by fuel injection. The development of these engines is a priority both for European automotive manufacturers competitiveness and European citizens quality of life.
Today, most of the CFD engine codes are based on statistically-averaged models of turbulence and combustion which are well known to have limited potential to reproduce the engine behavior when large structures have a direct impact on mixing or combustion, and to predict the engine cyclic variability. The semi-deterministic approach based on Large Eddy Simulations (LES) is viewed as potentially able to overcome these limitations. The objective of LES Engines is to make the Large Eddy Simulation methodology available for new spark-ignition (SI) reciprocating engine development.
The development of engine LES methodology is a complex scientific problem, with ultimate application in industry. Therefore, academic, R&D, and industrial partners, all known to be leaders in their respective fields, are collaborating in the LES Engines project. The development of the engine LES methodology will rely on: the use of state-of-the-art numerical (Direct Numerical Simulations) and experimental (laser based optical techniques) diagnostics to produce data bases for basic model development and validation purposes; the use of research and industrial CFD codes to as test vehicles for the methodology, and on extensive validation for situations ranging from simple academic flows to actual modern four-valve engines.
For the partners, the expected achievements of LES Engines should be:
*An LES methodology (Subgrid Scale Models and numerical schemes) tailored for SI engine reacting flows and validated by relevant experiments. *An evaluation of LES accuracy and particular characteristics and requirements for proper use, for applications ranging from simple experiments to actual stratified engines
*Practical experience on the use of LES in academic and industrial contexts. *Generation of DNS data bases for turbulence, mixing, droplet dispersion and evaporation and combustion for engine-relevant conditions
*Experimental data bases on flow fields, mixing fields, droplet dispersion and combustion, for the aforementioned situations.
It is expected that at the end of this project a LES methodology of quantified accuracy for engine combustion simulation will emerge and be available for incorporation into industrial CFD codes used by the automotive partner companies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics laser physics
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
92500 RUEIL MALMAISON
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.