Objective
In the opinion of the partners, the outcome of the project has more than exceeded our expectations. The focus of the current project has been on the development of wind enhancement and integration techniques which improve the annual energy yield per installation by concentrating the low to moderate wind speeds typical of most urban areas in Europe.
This involved balancing and reconciling aesthetic, aerodynamic, architectural, structural and environmental concerns. Specific achievements include:
- identifying and assessing types of urban locations where wind turbines could be placed (either as stand-alone machines or integrated into buildings);
- assessing the relative performances of a whole range of conventional and aerodynamic building shapes;
- assessment of energy potential by use of wind-tunnel testing on small-scale models and computational fluid dynamics simulations;
- development of methods for analysing the wind regimes in specific urban locations using statistical wind data, and, for assessing the potential annual energy contribution of one or more turbines integrated into a building;
- exploration of building aesthetics with reference to visual impacts of such schemes;
- optimisation of architectural space and building services;
- development of prototype structural systems for supporting turbines and isolating vibrations from buildings;
- development of prototype safety devices to address public safety concerns;
- study of impact of noise emissions from integrated turbines on building and immediate surroundings.
Field-testing of small wind turbines (both VAWT and HAWT) integrated into a prototype aerodynamic building (approximately 1/20th scale) employing these principles was successfully completed.
In comparison to an equivalent stand-alone machine, the turbines integrated into the building produced:
- power at lower cut-in wind speeds;
- substantially enhanced power output for effective angles of wind incidence up to 60(0);
- satisfactory power output (e.g. > 50%) when the wind is effectively coming at right angles to the turbine.
The key results from the field-testing- the enhanced performance of wind turbines integrated into an optimised static aerodynamic structure over an equivalent stand-alone machine - could also be exploited in other areas of the wind energy industry, e.g. offshore technology. This would also require detailed design and testing at intermediate to large scales.
Acceptability of wind turbines has met much opposition in recent years, partially because they are frequently seen as sharply contrasting intrusions into the natural landscape, since no other man-made structures are normally found around them. This proposal will address the acceptability issues by developing and integrating turbines into built environment in order to bring power generation closer to usage and also to contribute to the 'zero energy building' goal. It is also recognised that most built-up areas in Europe have low-to-moderate wind speed regime, partially because of the effect that increased surface roughness has on an atmospheric boundary layer profile. For these reasons wind applications in built-up areas have to fulfils several specific requirements which will be addressed in the proposal.
The key objectives are:
1. to develop wind enhancement and integration techniques for low to moderate wind speed areas (2.5 to 5 m/s annual average) in order to increase the "qualifying land mass area" for wind utilization in the AEU by improving the annual energy yield per installation. Particular attention would be given to wind concentration techniques using optimised building forms and purpose-made solid structures to create the "accelerated wind environment".
2. to develop turbine specification to cater for the above applications. Additionally these turbines would have to be closely controllable, with low noise emissions and be suitable for sensitive environmental integration in or around inhabited areas. All important environmental implications would be investigated.
3. to prove/demonstrate the above techniques on a scaled model in the field.
4. to assess and improve prospects for social, aesthetical and planning acceptability of such wind energy applications.
There are specific requirements that wind turbines for inhabited areas must satisfy in response to specific problems related to this type of application. They are going to be specifically addressed in this project.
1. Physical Safety. Prevention of injury to humans, birds, etc. will be an important aspect of urban application. Safety could be compromised due to reasons like blade rotation, high winds and possible blade shedding due to material fatigue.
2. Noise. The noise levels at neighbouring properties would not normally be allowed to exceed the level of background noise or 45 dB(A), whichever is higher. For this reason, quiet turbines are needed. The mechanical gear would have to be placed in an acoustic enclosure. Special types of control may have to be implemented in order to control the rotational speed in accordance with the background noise level at reference points in the surroundings.
3. Vibration and Resonance. Special structural provisions at the interface between the turbines and surrounding structures may be needed to avoid these effects.
4. Broadcasting Interference. This effect would have to be addressed and could lead to a specific choice of low radio wave reflectance materials for the blades, or a need for cable TV/radio provision, etc.
5. Low wind speed. This is frequently encountered in urban and suburban arenas In order to enhance the annual performance, a low cut-in wind speed will be required from the turbines to be applied in these areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy wind energy
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
N7 9DP LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.