The conversion of black liquor nitrogen to a volatile form (preferably ammonia) during evaporation would decrease nitrogen content in the as fired liquors. This would naturally be beneficial for the NOx emissions from the recovery boilers. The results of our studies, from both laboratory-scale investigations and mill-scale measurements indicate, however, that under normal operation conditions there is only very little generation of ammonia during the evaporation (at higher temperatures). Therefore, the increase could be achieved only by high-temperature treatments or by other, apparently catalytic processes. The latter approach could not be now used as no ideas on suitable catalysts or related processes could be presented.
The potential use of high-temperature treatments (from 170 to 300 °C) was now investigated in detail, using different black liquors and the treatment times up to 24 hours. There remained no doubt that such treatments can be applied for the reduction of the nitrogen contents in the liquors, but the required conditions are so drastic that currently no big chances can be foreseen for these processes. Typically, several hours were required at 200 °C to remove some 3050% of liquor nitrogen, and no recovery cycles can yet be constructed for such requirements. In the future, there may be different policies that facilitate this approach. If so, there is now a substantial amount of basic information available for planning the new processes. That would naturally require some modifications for the handling of the nitrogen- and sulphur-containing condensates from the heat treatments.