Objective
Antimicrobial agents, such as antibiotics, have dramatically reduced the number of deaths from infectious diseases over the last 70 years. However, through overuse and misuse of these agents, many micro-organisms have developed antimicrobial resistance. Oligonucleotide therapeutics have the potential to become the new class of antibacterials capable of treating a broad range of infections. By acting on novel targets, they circumvent current resistance mechanisms and with judicious use, can suppress the rise of future resistance.
DNA-TRAP will build on a platform technology that uses proprietary nucleic acid-based Transcription Factor Decoys (TFDs) that act on novel genomic targets by capturing key regulatory proteins to block essential bacterial genes and defeat infection. Taking forward newly emerging insights and expertise that exists within each of the partners and through the mutual secondment of researchers, the project aims to develop a new class of nanoparticulate antibacterials capable of meeting the clinical challenge of drug-resistant infections such as Clostridium difficile and Pseudomonas aeruginosa.
DNA-TRAP will establish a lasting, international partnership for transfer of knowledge between Industry and Academia in the field of nanomedicine. Exchange of knowledge and expertise between the partners is key to establishing the fundamental properties of nanostructured drug delivery systems to treat bacterial infections and through this, provide the basis for building a manufacturing platform to advance the experimental therapeutic into clinical trials.
17 researchers in the field of drug development and delivery from 2 commercial (SME) and 2 non-commercial partners across 2 member states, will have the opportunity to share and acquire new complementary and multidisciplinary knowledge, through inter-sectoral and interdisciplinary exchange, allowing for the development of new solutions and the establishment of further joint research projects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciencesbasic medicinepharmacology and pharmacydrug discovery
- medical and health scienceshealth sciencesinfectious diseases
- medical and health sciencesmedical biotechnologynanomedicine
- medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugsantibiotics
- medical and health sciencesbasic medicinepharmacology and pharmacydrug resistanceantibiotic resistance
You need to log in or register to use this function
Call for proposal
FP7-PEOPLE-2013-IAPP
See other projects for this call
Funding Scheme
MC-IAPP - Industry-Academia Partnerships and Pathways (IAPP)Coordinator
NR4 7TJ Norwich
United Kingdom